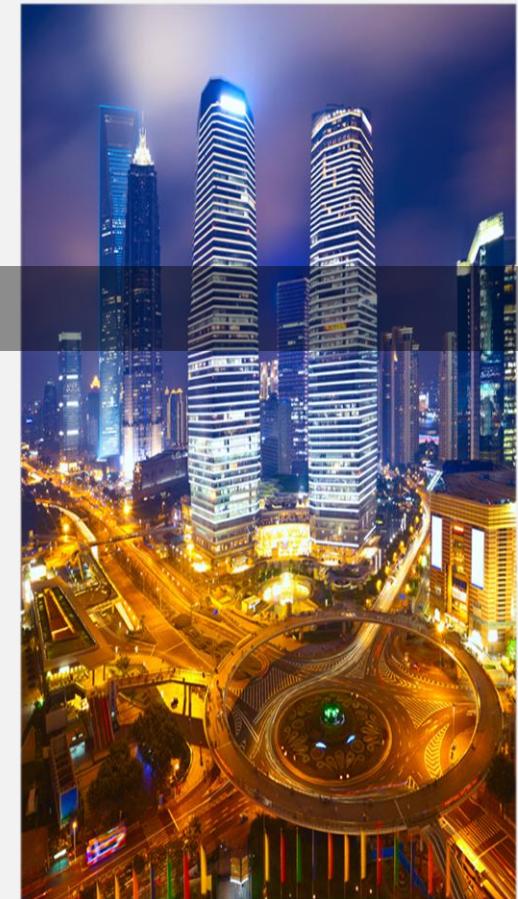


311 – 313 Hay Street
SUBIACO WA 6008
P: + 61 8 9381 5819
F: + 61 8 9388 3701
ABN: 45 098 448 269

14 March 2013

UPDATED INVESTOR PRESENTATION – MARCH 2013


The Directors of Pan Asia Corporation Ltd (the “**Company**”; ASX:PZC) are pleased to provide the attached updated Company presentation, which was given to attendees at the Asia Mining Congress 2013, in Singapore today by CEO Alan Hopkins.

COMPANY PRESENTATION

**“Suppling Key Energy Resources
Into Expanding Asian Markets”**

March 2013

Adding Value to Mid-Tier Projects in Asia

INDONESIAN
PROJECTS

RELIABLE EXPANDED
SUPPLY TO ASIAN
MARKETS

- Resource rich and well located
- Lower costs to develop, operate & deliver
- Australian mining and exploration standards
- Risk capital via regulated markets (ASX)
- ✓ Titles / Approvals in place
- ✓ Feasibility studies completed
- ✓ Strong foundation built for projects

Significant projects made ready for development partnerships / offtake agreements

INDONESIA'S COAL CLOCK

3rd Wave Coal Projects

- Underground
- Near Coast
- High Coal Quality Available
- Infrastructure Already In
- Big Tonnages Possible
- Minimum Impact

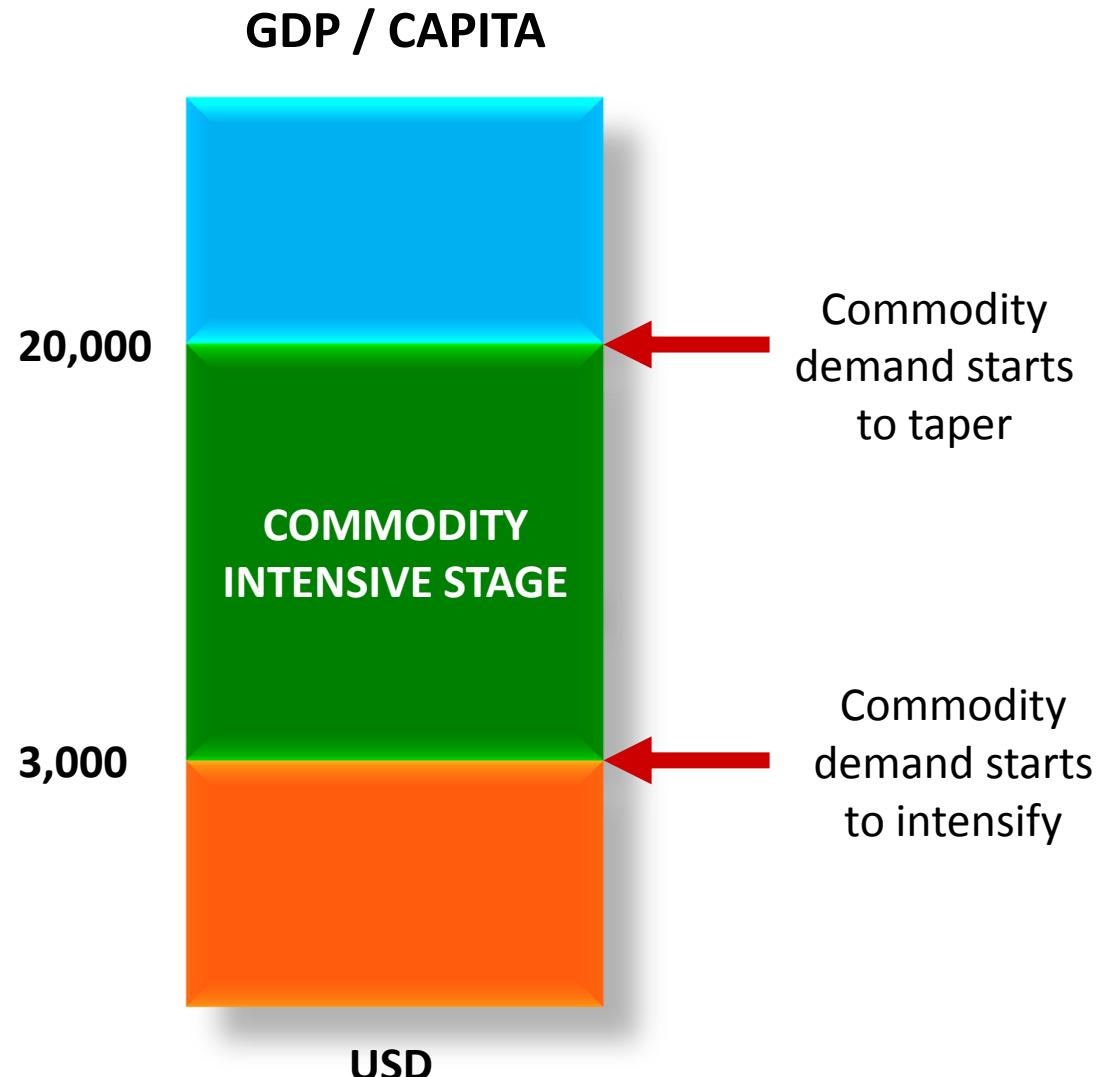
1st Wave Coal Projects

- Open Pit
- Near Coast
- Big Tonnages Available
- Low CAPEX/OPEX

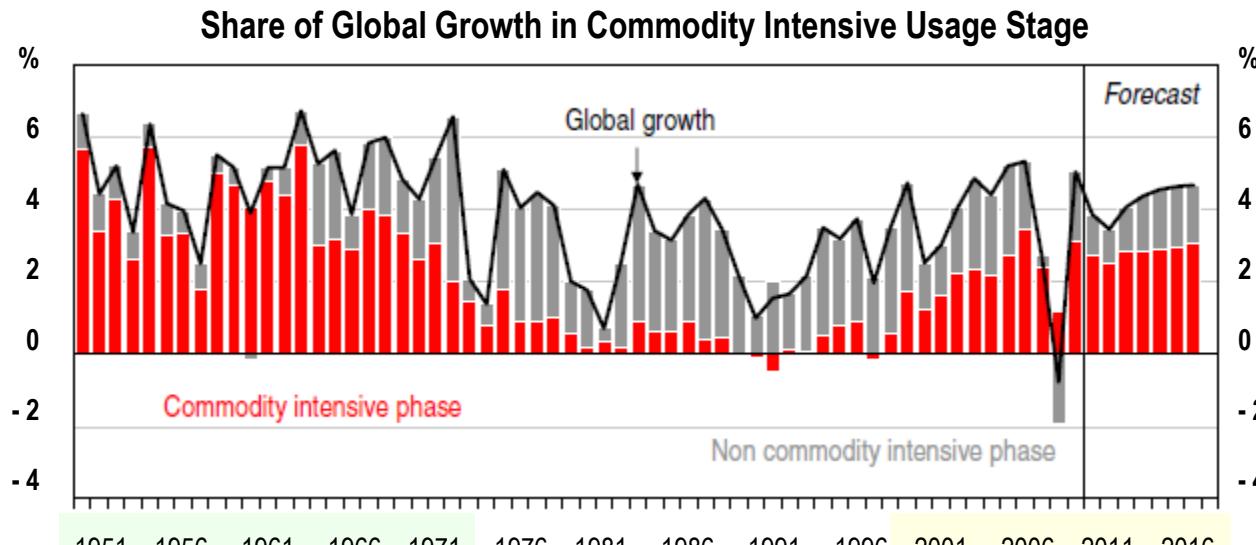
2nd Wave Coal Projects

- Open Pit
- Longer Haul/Barge
- May Need Infrastructure
- Needs Big Tonnage

OFFERS


- High Coal Quality
- Large Tonnage
- Good Location
- Infrastructure In
- Minimum Impact on Other Stakeholders (incl Forestry)

NEEDS


- Expertise
- Technology
- Higher CAPEX
- Higher Mining OPEX
- Up Front Analysis & Long Term Thinking

World is Still in a Commodity Intensive Stage

- Commodity intensive stage is USD 3,000 - USD 20,000
- 10 years ago, 25% of World population in this phase
- Now 60% of World population in this phase

World Growth – Commodity Demand Driven

Top Ten Countries Based on Per Capita Income Filter (3000; 20000)

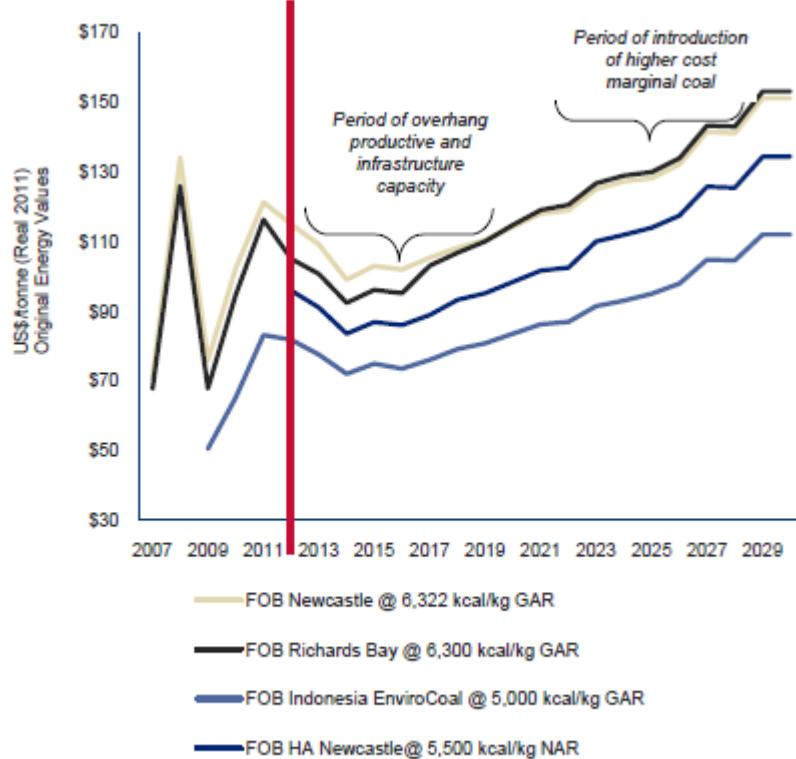
By Population		
Rank	1961	2011
1	United States	China
2	Japan	India
3	Brazil	Indonesia
4	Germany	Brazil
5	United Kingdom	Russian Federation
6	Italy	Mexico
7	France	Philippines
8	Mexico	Vietnam
9	Spain	Egypt
10	Poland	Turkey

- Low Government Debt
- Good Demographics

Coal Demand – Long Cycle

Developing Countries Provide Long Term Demand...

Long cycle ahead....


	Historical 5 Year Growth	China Current Intensity (per person)	Developed Economy Intensity (per person)	Potential Upside	Length of Growth Phase
Electricity Generation	10%	2.8 MWh	10.0 MWh	260%	15 – 20
Coal Demand	8%	2.2 tonnes	6.0 tonnes	170%	15 - 20

1.8 Billion People in Indonesia, India & Brazil also at Early Stage

(Indonesia 0.6MWh/per person & 8.5% p.a growth in electricity consumption/per person)

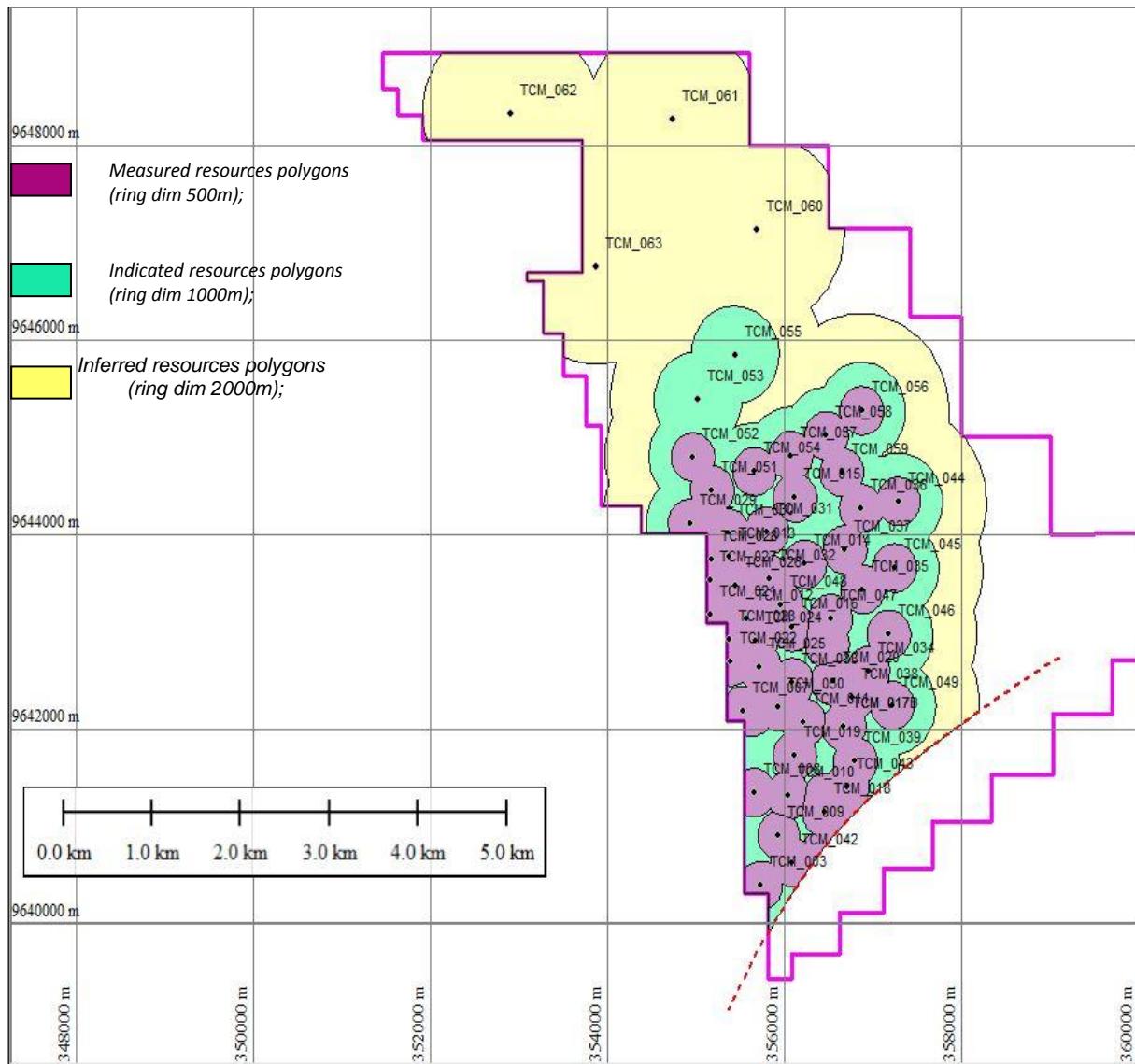
Coal Outlook Over the Next 15 – 20 Years

Long Term: thermal coal stabilises through continued Asian demand and rationalisation of supply

- China and India will drive this rebound with rapidly growing economies which are heavily reliant on coal
- Longer term fundamentals suggest the high demand growth trend will continue
- China and India in particular have little alternative but to expand coal use in the power sector
- Meeting the substantial demand growth will require expansion of existing supply basins and development of new reserves in more remote regions, exerting price pressure across the entire global supply chain
- New mining projects, at current pricing levels and capital intensity, likely to be shelved.

Flagship Pre Development Project – “TCM”

South Kalimantan



75% interest (25% Local Partners) (3,440Ha)

- ✓ Immediately adjacent to PT Arutmin ATA mine
- ✓ Coal seams dip into TCM
- ✓ High calorific value thermal coal
6,200 kcal / kg (GAR)
- ✓ 129Mt (mineable seams) of JORC measured, indicated & inferred resource, with potential to increase
- ✓ Haul road in
(51kms to Batulicin Barge Loading Terminal)

TCM Project – Resource Map Mineable Seams

- Base case Feasibility Study completed on Southern half
- Drilling in North recently completed
- JORC increased to ~129Mt mineable seams

TCM Project - Resource

	CURRENT			
	Measured Mt	Indicated Mt	Inferred Mt	TOTAL Mt
Mineable Seams				
SU (5)	20.43	12.25	32.03	64.71
SM (6)	17.19	12.22	35.04	64.45
Sub Total				129.16
Other Seams	15.79	10.95	21.37	48.11 *
TOTAL	53.41	35.42	88.44	177.27

- ~ 130 - 150Mt Mineable
- ~ 70%+ Mining Recovery
- ~ 78% Yield After Washing

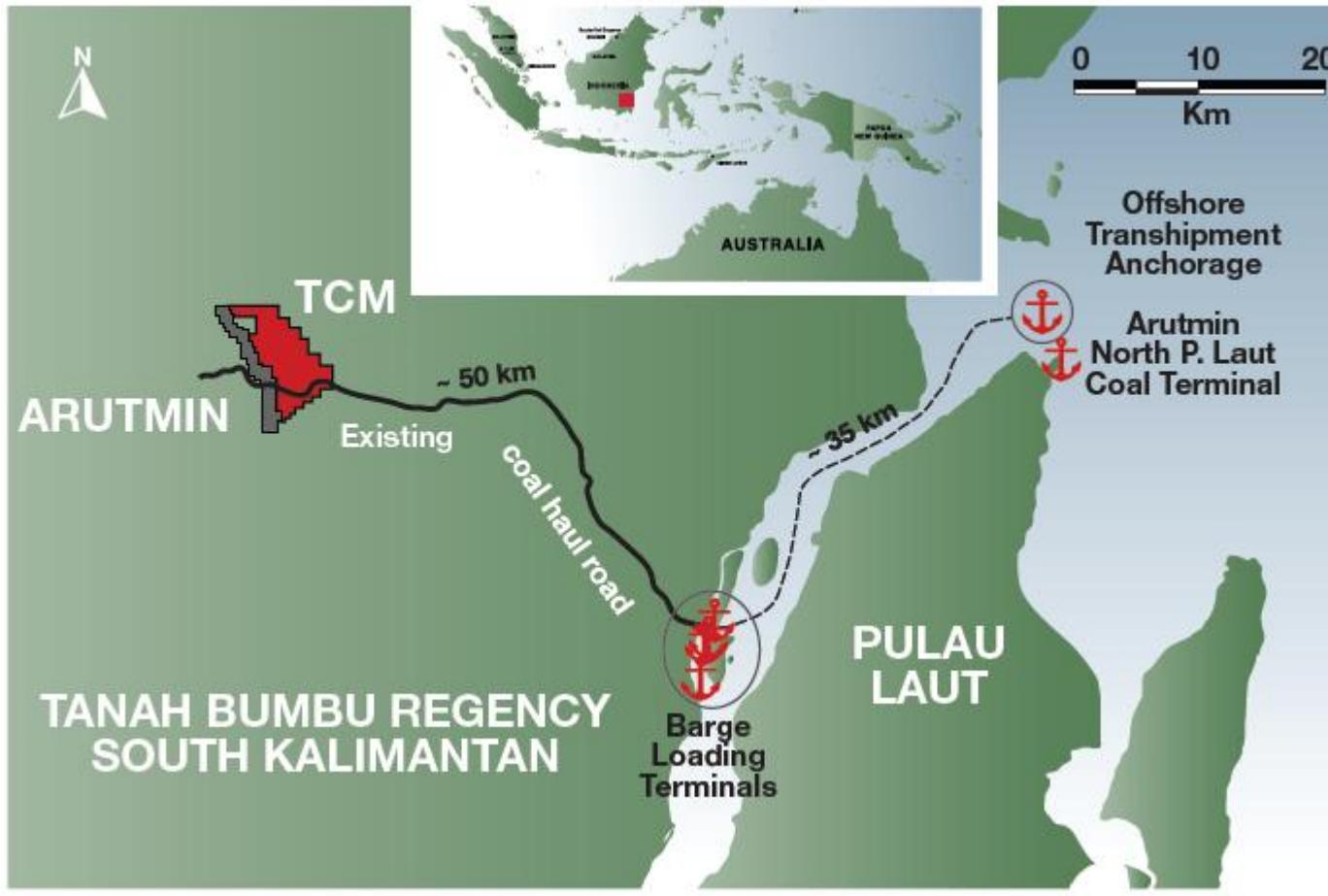
i.e. ~ 70Mt + = Sellable Coal

*> 50% of “other seams” are also potentially mineable.

TCM Project Overview

Target Sellable Coal	> 1.5Mt pa
Mine Life	> 30 years*
Target Sellable Coal C.V.	6200 GAR
Operating Cost /t on Mother Vessel	~ USD\$52/t

4 major exposed coal seams dipping into TCM area


- Base Case Feasibility Study completed by PT Kopex Mining Contractors (KMC).
- This study now undergoing review and updating for the recent JORC upgrade.
- Targeting moderate CAPEX, fast track to production.

Haul road infrastructure at TCM

* Based on recent JORC resource upgrade

TCM Project – Logistics & Status

✓ Production IUP

✓ Clean & Clear

✓ PMA Status

Milestones – TCM Project

1st HALF 2013

2nd HALF 2013

2014

Surface Civil Works Design

Update Feasibility Study for increase in JORC

Detailed Project Execution Planning (DPEP)

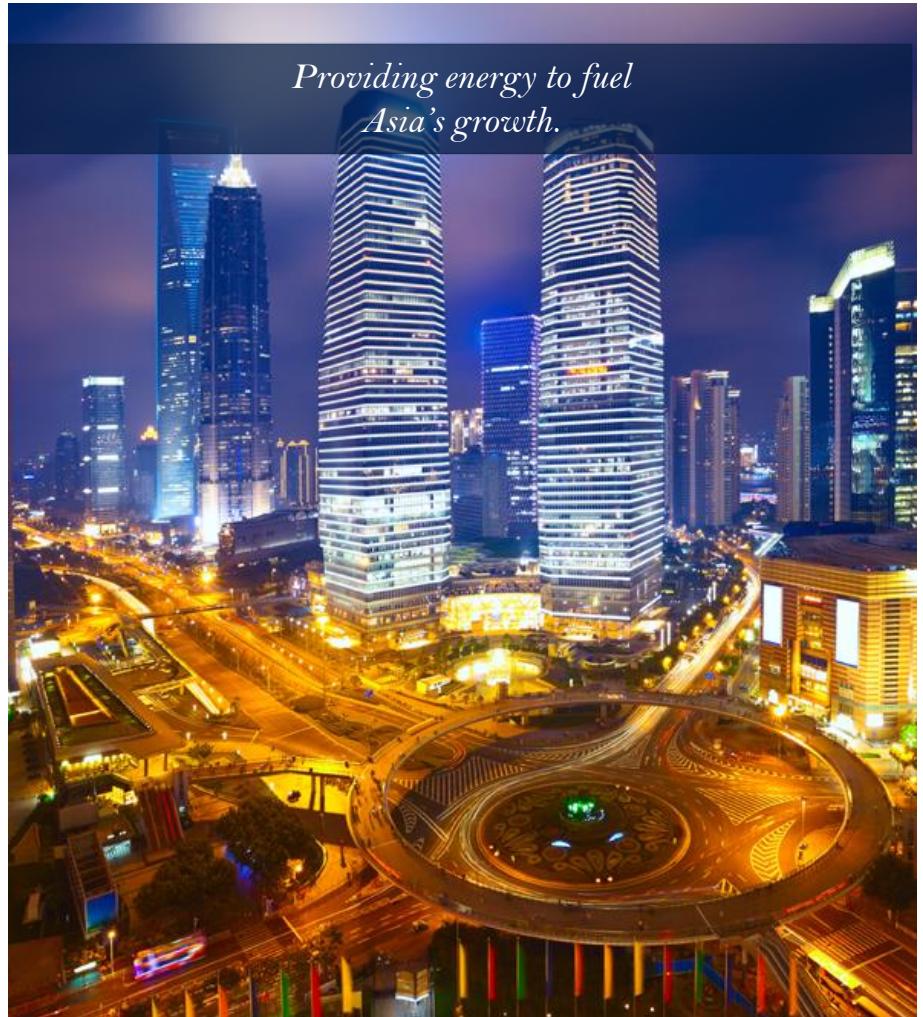
Funding for Pre Development

Remaining Permitting Pre Production

Funding for Development

Project Execution & Access to Coal

Mining Coal!

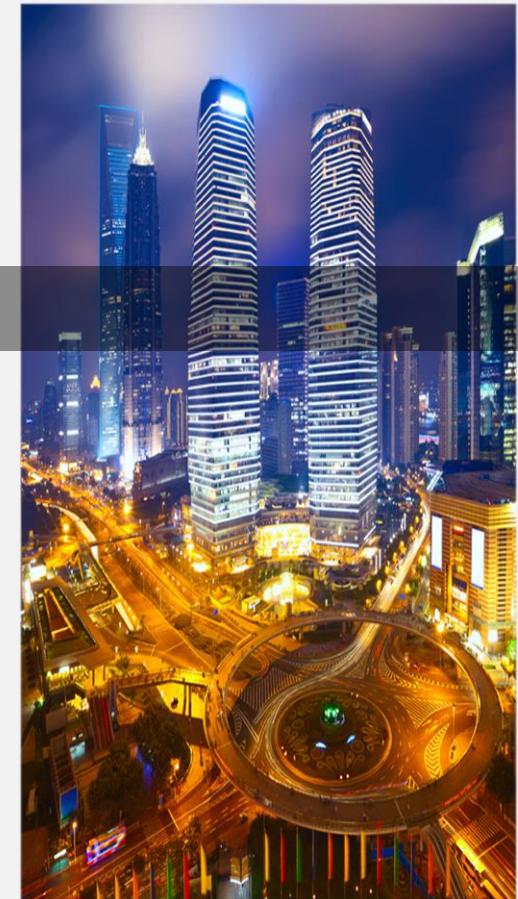

Summary

Emerging supplier of key energy resources into Asian markets

- Significant, proven high CV resource
- Good logistics
- Detailed development planning 2013
- Development & coal production 2014

Aligned local partners in Indonesia

Major re-rating opportunity



COMPANY PRESENTATION

**“Suppling Key Energy Resources
Into Expanding Asian Markets”**

March 2013

Team

Mitch Jakeman

Director

mitch@panasiacorp.com.au

- 35 years experience in the Australian coal mining industry
- Former Head of Coal Operations at Anglo Coal Australia

Other Directors:

Domenic Martino (Chairman)

Michael Pixley

Luke Martino

Company Secretary:

Jason Campbell

Alan Hopkins

Pan Asia CEO

alan@panasiacorp.com.au

- 25 yrs experience as CEO in public listed resource companies
- Many successful start-ups

Cicip Hadisucipto **Senior Economic Geologist**

cicip.hadi@gmail.com

- 25 years in Indonesian mining industry
- Currently Coal Assets Appraiser for the Stock Exchange Regulatory Board for the Republic of Indonesia

Technical & Support Team includes:

Bill Hewitt

In Country Manager

Agus Sucierto

Exploration Manager – TCM Project

Dadzui Ismail

Underground Mining Manager – TCM Project

Andrew Ichwan

In Country CFO

Disclaimer

Forward Looking Statements

This presentation includes certain "forward looking Statements". All statements other than statements of historical fact are forward looking statements that involve various risks and uncertainties. There can be no assurances that such statements will prove accurate and actual results and future events could differ materially from those anticipated in such statements. Such information contained herein represents management's best judgement as of the date hereof based on information currently available. The Company does not assume the obligation to update any forward looking statement.

Qualified Person

The technical information in this presentation is derived from Pan Asia's ASX releases, each of which has been reviewed by our competent person, Marek Rosa, as defined in the 2004 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Copies of prior releases are available on the ASX website or www.panasiacorp.com.au

Competent Persons' Statement

The information in this release that relates to the Coal Resources of PT. Transcoal Minergy ("TCM") is based on information compiled and reviewed by Mr. Marek Rosa, who is a Member of the Australasian Institute of Mining and Metallurgy (The AusIMM) and works full time for PT Kopex Mining Contractors based in Jakarta, Indonesia (Member of Kopex Group Poland).

Mr Rosa is a qualified geologist who has more than 20 years of relevant mining and geological experience in coal, working for major mining companies in Poland (17 years) and in Indonesia (4 years) as a consultant. He has National Polish geological license No II-1140 for research, exploration, resource and reserve estimation of deposits of basic minerals and coalbed gas methane. During this time he has either managed or contributed significantly to numerous mining studies related to the estimation, assessment, evaluation and economic extraction of coal in Poland and Indonesia. He has sufficient experience which is relevant to the style and type of deposit under consideration especially for Underground Mining and to the activity he is undertaking to qualify him as a Competent Person for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

The estimates of Coal Resources have been carried out in accordance with the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (December,2004) and Mr Rosa consents to the inclusion in this release of the Mineral Resources in the form and content in which it appears.

MAREK ROSA M.Sc. (Geology), MAusIMM

Appendix 1

JORC Resources Statement at 31 October 2012

Measured Resources (current statement 31 October 2012)

The Measured Resources are summarised below and are reported in accordance with the requirements of the JORC Code (2004).

Seam	Area	Thickness	Tonnes
	[m ²]	[m]	[T]
S1	0.00	0.00	0.000
S2	1,775,771	0.27	649,236
S3U	6,781,597	0.27	2,311,800
S3L	2,669,699	0.23	830,755
S4 (SR)	6,575,827	0.91	8,149,454
S5 (SU)	7,589,922	1.93	20,434,284
S6 (SM)	7,586,310	1.63	17,193,018
S6L (SL-1)	5,093,965	0.53	3,702,516
S7 (SL-2)	307,631	0.33	138,327
Total		6.10	53,409,390

Indicated Resources (current statement 31 October 2012)

The Indicated Resources are summarised below and are reported in accordance with the requirements of the JORC Code (2004).

Seam	Area	Thickness	Tonnes
	[m ²]	[m]	[T]
S1	142,229	0.22	43,979
S2	1,416,997	0.29	546,640
S3U	4,533,838	0.25	1,429,688
S3L	2,025,453	0.26	702,488
S4 (SR)	4,879,595	0.89	5,918,608
S5 (SU)	4,768,483	1.86	12,248,984
S6 (SM)	4,762,871	1.86	12,221,817
S6L (SL-1)	4,108,149	0.38	2,157,367
S7 (SL-2)	366,204	0.29	146,596
Total		6.30	35,416,167

Appendix 1 (continued)

Inferred Resources (current statement 31 October 2012)

The Inferred Resources are summarised below and are reported in accordance with the requirements of the JORC Code (2004).

Seam	Area	Thickness	Tonnes
	[m ²]	[m]	[T]
S1	2,355,891	0.22	711,325
S2	1,913,745	0.29	752,891
S3U	7,496,110	0.27	2,525,904
S3L	5,450,753	0.27	1,944,154
S4 (SR)	12,291,619	0.86	14,288,472
S5 (SU)	12,262,375	1.90	32,032,238
S6 (SM)	12,225,738	2.10	35,035,142
S6L (SL-1)	3,033,355	0.28	1,151,117
S7 (SL-2)	0	0.00	0
Total		6.19	88,441,243

Coal Quality Resource Summary

Two hundred and twenty (226) samples were analysed to confirm the coal quality data.

Average Coal Quality

Seam ID	TM	IM	Ash	VM	FC	TS	CV (adb)	RD
	(% ar)	(% adb)	(% adb)	(% adb)	(% adb)	(% adb)	(Kcal/kg)	g/Cc
S4 (SR)	5.7	4.3	8.7	43.3	43.8	2.64	6,991	1.34
S5 (SU)	5.2	3.9	12.8	41.7	41.6	1.65	6,655	1.36
S6 (SM)	5.0	3.6	12.7	42.3	41.5	0.39	6,705	1.36
S6L(SL1)	5.1	3.7	12.25	42.9	41.0	0.41	6,718	1.35
Average Value	5.2	3.8	11.7	42.6	42.0	1.27	6,767	1.35
Parting b/w S5&S6	2.7	1.6	77.5	15.1	5.8	0.25	1,061	2.09
Weighted Avg value S5&S6	5.10	3.75	12.75	42.00	41.55	1.02	6680	1.36

Appendix 1 (Continued)

PARAMETERS USED IN JORC STATEMENT 31 OCTOBER 2012

- Completed 64 boreholes (typically >200m depth);
- All finished boreholes were drilled vertically and geophysically logged at the completion of the each borehole;
- Phase 1 & 2 drilling used touch coring method, while Phase 3 & 4 drilling adopted full coring through target seams;
- All borehole locations have been surveyed;
- Profiles, logs of boreholes, seams correlation and collar co-ordinates completed;
- Laboratory testing: quality, geotech, gas methane completed;
- All data was put into an electronic database;
- Minimum thickness of 0.20m coal is reported within the model;
- Maximum thickness of parting included in seam thickness is 0.10m;
- Minimum thickness of 1.00m is established for resources dedicated for potentially underground exploitation.

Based on the level of complexity of the TCM deposit, Kopex sub-divided resources into categories based on the following drill spacing:

Measured <500m/ Indicated 500 - 1000m / Inferred 1,000 - 2,000m