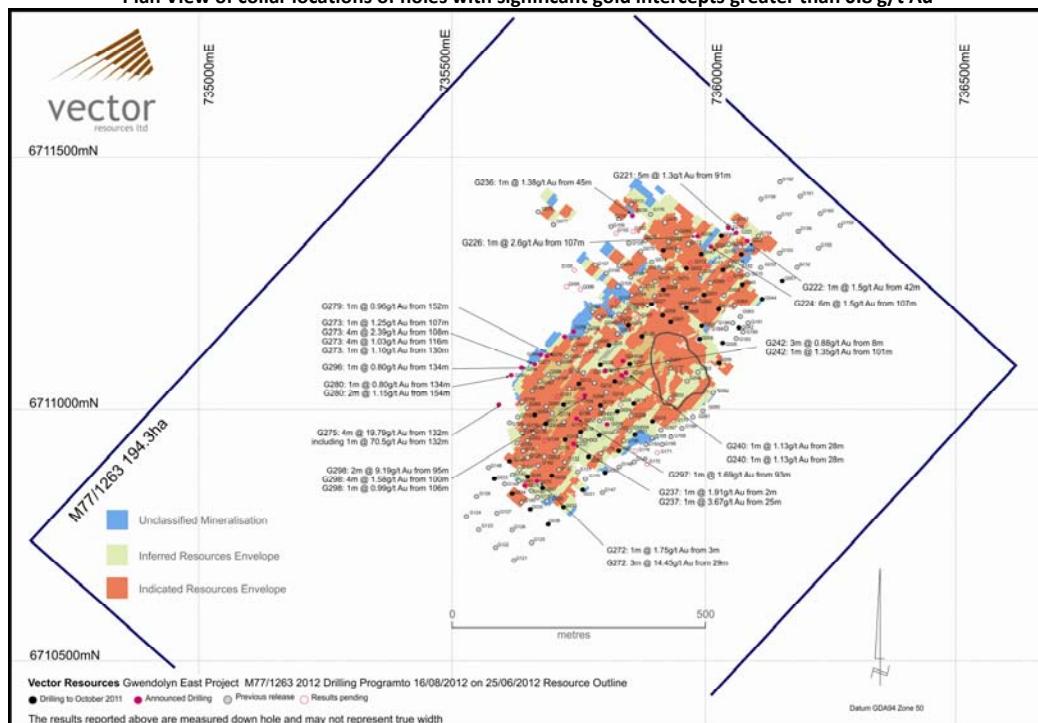


> High Grade Gold Intercepts Continue at Gwendolyn


Key Highlights

- **High grade gold results continue from extensional and unclassified infill drilling;**
- **Significant intercepts include:**
 - **4 m @ 19.79 g/t from 132 m;**
 - **3 m @ 14.45 g/t from 29 m;**
 - **2 m @ 12.35 g/t from 92 m;**
 - **2m @ 9.19 g/t from 95 m;**
 - **2 m @ 5.60 g/t from 9 m;**
 - **3 m @ 3.54 g/t from 102 m;**
 - **5 m @ 3.38 g/t from 19 m; and**
 - **8 m @ 3.23 g/t from 51 m.**
- **Targeted deep holes have potentially intercepted the top of the high grade conduit zone;**
- **Current drilling is targeting the conduit area to determine extension and to identify primary gold feeder zone; and**
- **Assay results for 82 RC holes currently pending.**

Vector Resources Ltd (ASX: VEC) ("Vector" or "the Company") is pleased to announce that it has received further assay results from the priority drilling of the Phase 3 reverse circulation (RC) program and initial deep holes from Phase 4 targeting the potential mineralisation conduit at the Company's Gwendolyn East Project in Western Australia.

The single metre and four metre composites received are a combination of extensional and infill drilling. These results identify that the mineralisation envelope continues to expand.

Plan View of collar locations of holes with significant gold intercepts greater than 0.8 g/t Au

The exploration team have been testing areas to the south east of the historic open pit and to the south west of the known mineralisation envelope at depth while completing the infill drill pattern within the mineralisation envelope.

The company as part of the Phase 4 program have been targeting the western extension at depth with holes planned to depths of 250 metres. Previous drilling on the south west limb indicated that the mineralisation envelope was steepening to possible sub-vertical angles at depths greater than 130 metres. Ten holes were planned to test this theory as it had the potential to identify the main conduit of the mineralised fluids during the formation of the deposit.

If these designed holes intercepted mineralisation at the target zone then Vector intends to continue to explore this possible conduit with the aim of identifying the main feeder zone of the gold mineralisation. Partial results of seven of these holes have been received from the primary laboratory Aurum and the umpire laboratory SGS. The geology of these holes has shown that there is a large band of approximately 23 metres of material previously identified at Gwendolyn as being gold bearing at depth. In particular hole G275 appears to have hit the upper levels of this potential conduit, with significant grade identified on the hanging-wall of the intercept.

With continued drilling of this area the Company hopes to confirm that the mineralisation envelope is steepening at depth. This change in the dip at depth is more acceptable to conventional long-hole open stoping mining methods for future underground mining scenarios.

Other results relate to infill drilling and extensional drilling on the north west and north east of the open pit. The Company currently has over 82 complete holes awaiting assay results which will complete the Phase 3 infill drilling and continue to expand the Company's understanding of the potential extension of the mineralisation envelope in multiple directions.

Drill hole single assay

Table 1: Drill hole single assay results with significant gold intercepts greater than 0.8 g/t Au

SiteID	Coordinates - MGA94 Zone 50S					Intercepts				Reported
	Dip	Azimuth	East	North	TDepth	DepthFrom	DepthTo	Intercept	Au	
G114	-60	130	736046	6711303	100	4	5	1	0.88	
						77	78	1	0.85	
G144	-60	130	735595	6710861	100	1	2	1	0.88	
G173	-60	130	735721	6710981	138	0	1	1	1.68	7m @ 1.56g/t Au from 0m
						1	2	1	1.88	
						2	3	1	1.29	
						3	4	1	1.65	
						4	5	1	0.78	
						5	6	1	0.21	
						6	7	1	3.42	
						89	90	1	2.61	
						133	134	1	0.85	
						4	5	1	1.17	
G174	-60	130	735699	6710999	130	5	6	1	0.38	5m @ 1.24g/t Au from 4m
						6	7	1	0.74	
						7	8	1	1.15	
						8	9	1	2.78	
						86	87	1	1.18	
						92	93	1	21.95	
						93	94	1	2.75	
						98	99	1	0.97	

[#] Notes on sample intercept widths: The metre intervals detailed in the table above are measured down-hole lengths and are unlikely to be indicative of true width.

Table 1, Continued : Drill hole single assay results with significant gold intercepts greater than 0.8 g/t Au

Coordinates - MGA94 Zone 50S						Intercepts				Reported
SiteID	Dip	Azimuth	East	North	TDepth	DepthFrom	DepthTo	Intercept	Au	
G175	-60	130	735756	6710874	100	39	40	1	0.83	1m @ 0.83g/t Au from 39m
G203	-62	130	735927	6711031	100	1	2	1	0.90	5m @ 0.90g/t Au from 1m
						2	3	1	0.64	
						3	4	1	0.95	
						4	5	1	1.06	
						5	6	1	0.96	
						10	11	1	1.03	6m @ 0.9g/t Au from 10m
						11	12	1	0.52	
						12	13	1	0.80	
						13	14	1	0.72	
						14	15	1	1.00	
G206	-60	130	735825	6711299	103	15	16	1	1.33	5m @ 3.38g/t Au from 19m
						19	20	1	1.31	
						20	21	1	0.63	
						21	22	1	0.15	
						22	23	1	1.78	
						23	24	1	13.01	1m @ 3.83g/t Au from 63m
						63	64	1	3.83	
G208	-60	130	735849	6711000	100	0	1	1	9.85	2m @ 5.60 g/t Au from 0m
						1	2	1	1.36	
G210	-60	130	735805	6711040	115	8	9	1	0.82	1m @ 0.82g/t Au from 8m
						12	13	1	1.38	1m @ 1.38g/t Au from 12m
						79	80	1	1.41	2m @ 1.27g/t Au from 79m
						80	81	1	1.12	1m @ 1.96g/t Au from 88m
						88	89	1	1.96	
						99	100	1	3.15	4m @ 2.37g/t Au from 99m
						100	101	1	1.98	
						101	102	1	2.42	
						102	103	1	1.92	
G211	-60	130	735760	6711080	109	8	9	1	1.33	1m @ 1.33g/t Au from 8m
G212			735782	6711061	127	51	52	1	4.21	8m @ 3.23g/t Au from 51m
						52	53	1	10.35	
						53	54	1	4.13	
						54	55	1	1.20	
						55	56	1	1.56	
						56	57	1	1.65	
						57	58	1	1.79	
						58	59	1	0.97	
						86	87	1	1.60	1m @ 1.60g/t Au from 86m
						94	95	1	1.04	2m @ 1.67g/t Au from 94m
G215	-60	130	736082	6711282	100	95	96	1	2.22	1m @ 0.81g/t Au from 103m
						103	104	1	0.81	
						43	44	1	3.54	1m @ 3.54g/t Au from 43m
						83	84	1	1.62	1m @ 3.54g/t Au from 43m
G218	-60	130	736045	6711342	120	90	91	1	5.56	1m @ 3.54g/t Au from 43m
						102	103	1	0.82	3m @ 3.54g/t Au from 102m
						103	104	1	2.99	
						104	105	1	2.08	

^a Notes on sample intercept widths: The metre intervals detailed in the table above are measured down-hole lengths and are unlikely to be indicative of true width.

Table 1, Continued : Drill hole single assay results with significant gold intercepts greater than 0.8 g/t Au

SiteID	Coordinates - MGA94 Zone 50S					Intercepts				Reported
	Dip	Azimuth	East	North	TDepth	DepthFrom	DepthTo	Intercept	Au	
G221	-60	130	736059	6711367	102	91	92	1	2.13	5m @ 1.30g/t Au from 91m
						92	93	1	0.50	
						93	94	1	0.13	
						94	95	1	2.25	
						95	96	1	1.47	
G222	-60	130	736080	6711350	115	42	43	1	1.50	1m @ 1.5g/t Au from 42m
G224	-60	130	736011	6711339	132	107	108	1	1.22	6m @ 0.97g/t Au from 107m
						108	109	1	0.58	
						108	109	1	0.58	
						109	110	1	1.55	
						110	111	1	0.68	
						111	112	1	1.22	
G226	-60	130	735983	6711360	120	112	113	1	1.20	1m @ 1.2g/t Au from 112m
G236	-60	130	735856	6711402	103	45	46	1	1.38	1m @ 1.38g/t Au from 45m
G237	-60	130	735740	6710936	97	2	3	1	1.91	1m @ 1.91g/t Au from 2m
						54	55	1	3.67	
G240	-60	130	735842	6711082	114	28	29	1	1.13	1m @ 1.13g/t Au from 28m
G242	-60	130	735803	6711085	102	8	9	1	0.95	3m @ 0.88g/t Au from 8m
						9	10	1	0.84	
						9	10	1	0.84	
						101	102	1	1.35	1m @ 1.40g/t Au from 101m
G272	-60	130	735660	6710860	115	3	4	1	1.75	1m @ 1.75g/t Au from 3m
						29	30	1	37.00	
						30	31	1	1.38	
						31	32	1	4.96	
G273	-60	130	735665	6711098	228	107	108	1	1.25	1m @ 1.25g/t Au from 107m
						130	131	1	1.1	
G275	-60	130	735595	6711016	186	132	133	1	70.5	4m @ 19.79g/t Au from 132m
						133	134	1	2.86	
						134	135	1	1.16	
						135	136	1	4.64	
						136	137	1	8.69	Or, 5 m @ 17.57g/t from 132m
G296	-60	130	735639	6711092	178	168	169	1	1.15	1m @ 0.80g/t Au from 134m
G297	-60	130	735746	6710989	108	93	94	1	1.69	1m @ 1.69g/t Au from 93m
G298	-60	130	735763	6711033	126	95	96	1	14.90	2m @ 9.19g/t Au from 95m
						96	97	1	3.48	
						100	101	1	2.70	
						101	102	1	1.07	
						102	103	1	1.44	
						103	104	1	1.09	
G279	-60	130	735689	6711117	200	106	107	1	0.99	1m @ 0.99g/t Au from 106m
						134	135	1	0.80	
						154	155	1	1.45	
G280	-60	130	735619	6711076	190	155	156	1	0.85	2m @ 1.15g/t Au from 154m

[#] Notes on sample intercept widths: The metre intervals detailed in the table above are measured down-hole lengths and are unlikely to be indicative of true width.

[~]Cream shaded cells refer to results from umpire laboratory SGS with primary assays from Aurum laboratory pending.

Table 2: Drill hole 4m composites assay results with significant gold intercepts greater than 0.8 g/t Au

Gwendolyn	Coordinates - MGA94 Zone 50S						Intercepts				Reported
	SiteID	Dip	Azimuth	East	North	TDepth	DepthFrom	DepthTo	Intercept	Au	
	G273	-60	130	735665	6711098	228	108	112	4	2.39	4m @ 2.39g/t Au from 108m
							116	120	4	1.03	4m @ 1.03g/t Au from 116m

[#] Notes on sample intercept widths: The metre intervals detailed in the table above are measured down-hole lengths and are unlikely to be indicative of true width.

The Phase 3 drill program is now complete with the Phase 4 program continuing without any delay, drilling extensional targets in all directions of the known mineralisation envelope.

Significant Upside

Gwendolyn has the potential to increase the current resource, with encouraging fundamentals including:

- High Grade intercepts identified outside current mineralisation envelope and remains open in all directions;
- Extensional exploration will continue to push existing ore boundaries as a priority;
- Potential high grade conduit identified at depth; and
- Substantial assay results pending.

ENDS

Competent Person's Statement:

[#] Notes on sample intercept widths: The metre intervals detailed in the table above are measured down-hole lengths and are unlikely to be indicative of true width.

[~]Cream shaded cells in Table 1, refer to results from umpire laboratory SGS with primary assays from Aurum laboratory pending.

^{*} Notes on Exploration Targets: In accordance with Clause 18 of the JORC Code, it is important to note that the 'Target Resource' referred to above remains subject to further exploration and evaluation to bring the 'unclassified material' to a JORC Compliant resource. The current interpretation is conceptual in nature and remains preliminary and is based on exploration, evaluation and resource definition work undertaken to date.

The information in this report that relates to Exploration Results or Mineral Resources of Vector Resources Ltd and its subsidiaries is based on information reviewed by Mr Arnel Mendoza, who is a Member of the Australian Institute of Geoscientists ("AIG") and a Member of The Australasian Institute of Mining and Metallurgy. Mr Mendoza is a full-time employee of the Company.

Mr Mendoza has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Arnel Mendoza consents to the inclusion in this announcement of the matter based on his information in the form and context it appears.