

Multiple, Broad Gold Intercepts at Prickleys Open-Pit

Results from 4th of 11 open-pits drilled in current program – results from remaining 7 open-pits pending

Highlights

- Results received from drilling below the Prickleys open pits as part of Vango's 2021 drilling campaign
- In conjunction with historic intersections, results have significantly extended depth of the mineralised zone at Prickleys:
 - 10m @ 1.6 g/t Au from 116m in VPKRC0006 incl 3m @ 4.3 g/t Au from 116m
 - 4m @ 1.0 g/t Au from 45m in VPKRC0007 incl 1m @ 3.5 g/t Au from 116m
 - 10m @0.3 g/t Au from 128m in VPKRC0002 incl 1m @ 1.3 g/t Au from 135m
 - 6m @0.5 g/t Au from 139m in VPKRC0004 incl 1m @ 1.2 g/t Au from 143m
 - 13m @0.7 g/t Au from 150m in VPKRC0004 incl 1m @ 2.6 g/t Au from 153m
- Highlight historic intersections include:
 - 12m at 2.5 g/t Au from 41m in MHR1031
 - 5m at 6.1 g/t Au from 51m in MHR1505A
 - 1m at 29 g/t Au from 36m in MHR1577
 - 8m at 7.0 g/t Au from 43m in MRC1015D
 - 6m at 5.0 g/t Au from 56m in PCRC0009
 - 14m at 13.7 g/t Au from 44m in PRC0016_M
 - 21m at 2.0 g/t Au from 48m in PRC0019_M
 - 2m at 29.1 g/t Au from 78m in PRC0041_M
 - 8m at 4.3 g/t Au from 42m in PRC0057_M
 - 6m at 8.3 g/t Au from 41m in PRC0104_M
 - 18m at 3.0 g/t Au from 51m in PRD0001
 - 15m at 9.4 g/t Au from 44m in PRD0002
- Steep mineralised structures broadly follow the contact between sediments and mafics and have returned strong mineralisation in previous drilling in un-mined areas below the open-pit
- These results continue to strengthen the significant open-pit potential at Marymia and following completion of all planned open-pit drilling will contribute to a resource upgrade planned for 2022

Vango Mining Limited (Vango, ASX: VAN) is pleased to announce further gold intersections from drilling at the Company's flagship Marymia Gold Project (Marymia, the Project) in the Mid-West region of Western Australia.

These results are from 8 holes at the Prickleys Open pit area. This area was previously mined at a time when the gold price was a fraction of the current price, presenting the opportunity for Vango's current open-pit focused drilling to increase the potential for additional mineable resources.

There are significant gold intercepts below the historic pit and this drilling has been designed to test for extensions to these resources as well as repeating structures at depth.

Vango's drilling at Prickleys has returned six holes with gold greater than 1g/t often within broad mineralised envelopes >0.3g/t Au. All holes returned gold greater than 0.5g/t. The results confirm the continuity of the mineralised structures below the pit and in areas of previous gold mineralisation and significantly extend the depth of the mineralisation in many cases:

- 10m @ 1.6 g/t Au from 116m in VPKRC0006 incl 3m @ 4.3 g/t Au from 116m**
- 4m @ 1.0 g/t Au from 45m in VPKRC0007 incl 1m @ 3.5 g/t Au from 48m**
- 11m @ 0.4 g/t Au from 72m in VPKRC0007 incl 1m @ 1.2 g/t Au from 75m**
- 10m @ 0.3 g/t Au from 128m in VPKRC0002 incl 1m @ 1.3 g/t Au from 135m**
- 6m @ 0.5 g/t Au from 139m in VPKRC0004 incl 1m @ 1.2 g/t Au from 143m**
- 13m @ 0.7 g/t Au from 150m in VPKRC0005 incl 1m @ 2.6 g/t Au from 153m**

See Table 1 for a list of all significant intercepts from Vango's drilling at Prickleys in its 2021 drilling campaign.

The mineralisation at Prickleys is within steep mineralised structures broadly following the contact between sediments and mafics. These structures have returned excellent gold intercepts, in historical drilling, from outside the mined area included:

- 12m at 2.5 g/t Au from 41m in MHR1031**
- 5m at 6.1 g/t Au from 51m in MHR1505A**
- 1m at 29 g/t Au from 36m in MHR1577**
- 8m at 7.0 g/t Au from 43m in MRC1015D**
- 6m at 5.0 g/t Au from 56m in PCRC0009**
- 14m at 13.7 g/t Au from 44m in PRC0016_M**
- 21m at 2.0 g/t Au from 48m in PRC0019_M**
- 2m at 29.1 g/t Au from 78m in PRC0041_M**
- 8m at 4.3 g/t Au from 42m in PRC0057_M**
- 6m at 8.3 g/t Au from 41m in PRC0104_M**
- 18m at 3.0 g/t Au from 51m in PRD0001**
- 15m at 9.4 g/t Au from 44m in PRD0002**

A second phase of drilling at Prickleys is planned to be undertaken to test this mineralised zone further, to determine the tenor of the mineralisation to determine potential resources.

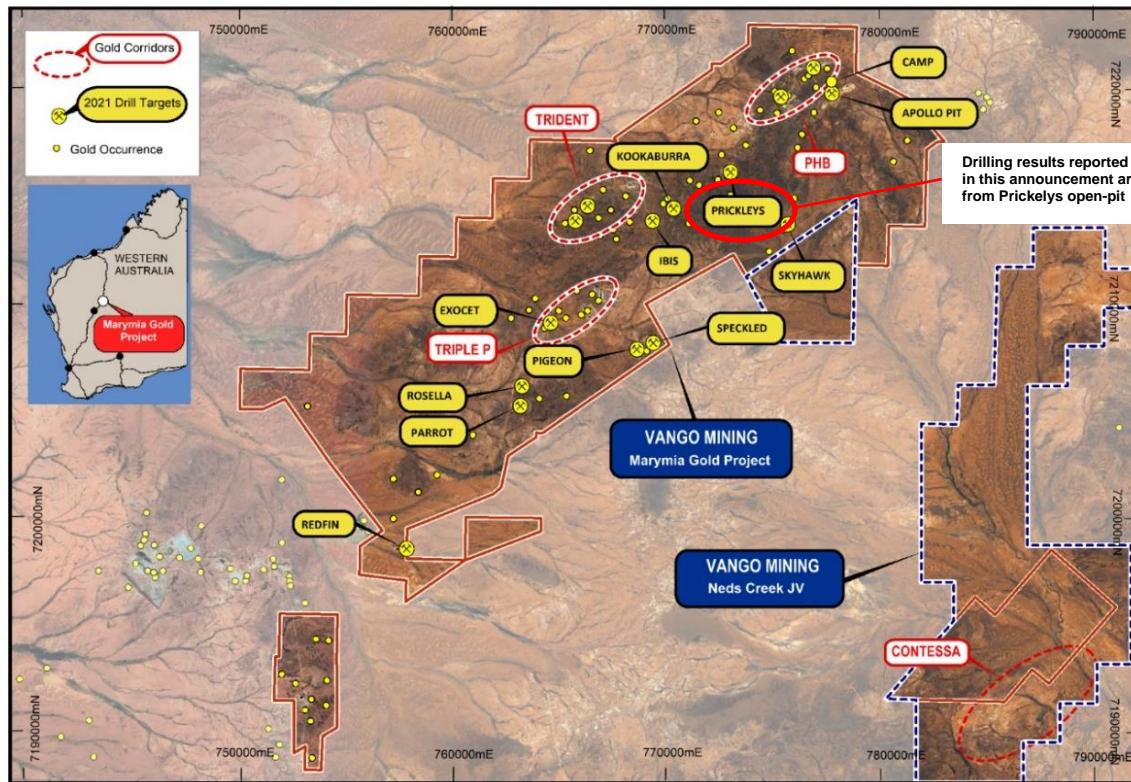


Figure 1 Marymia Gold Project showing the 11 priority open pits.

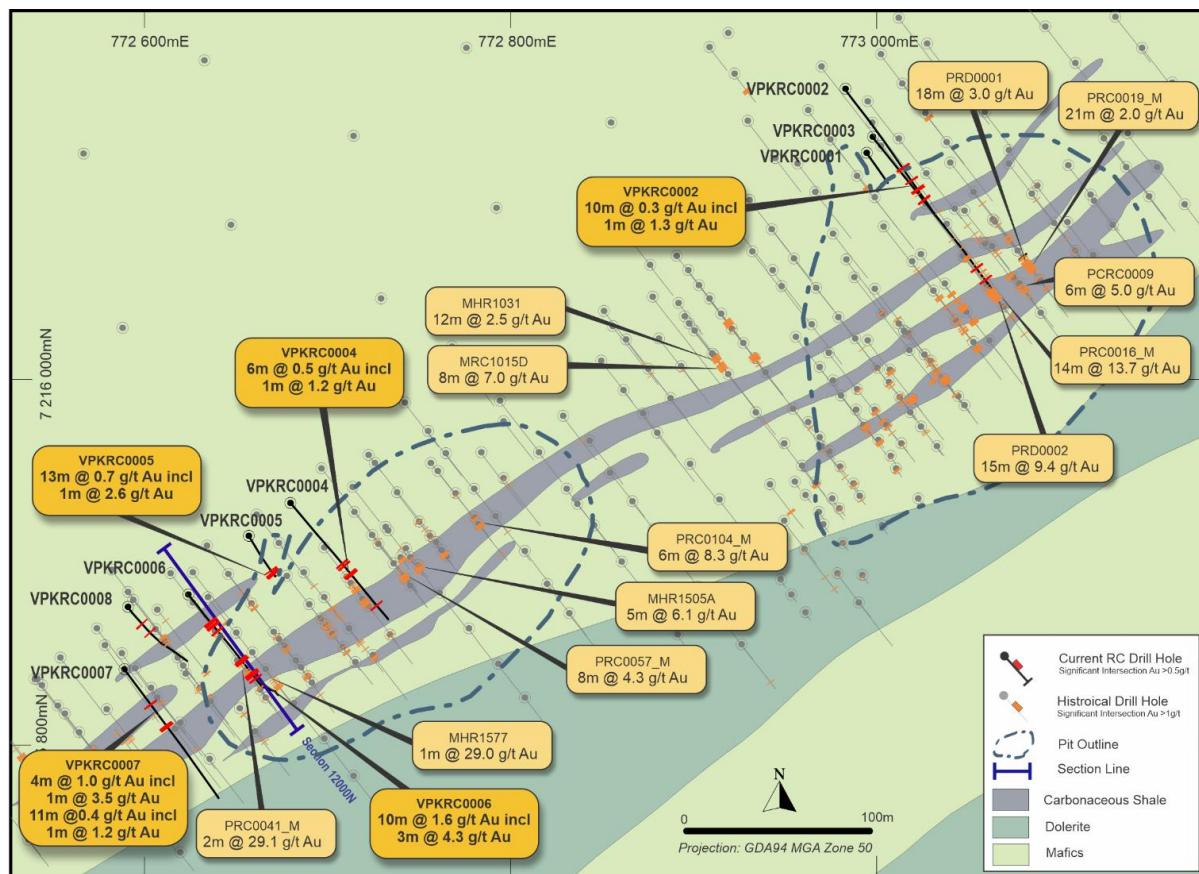


Figure 2 Plan View Prickleys Area

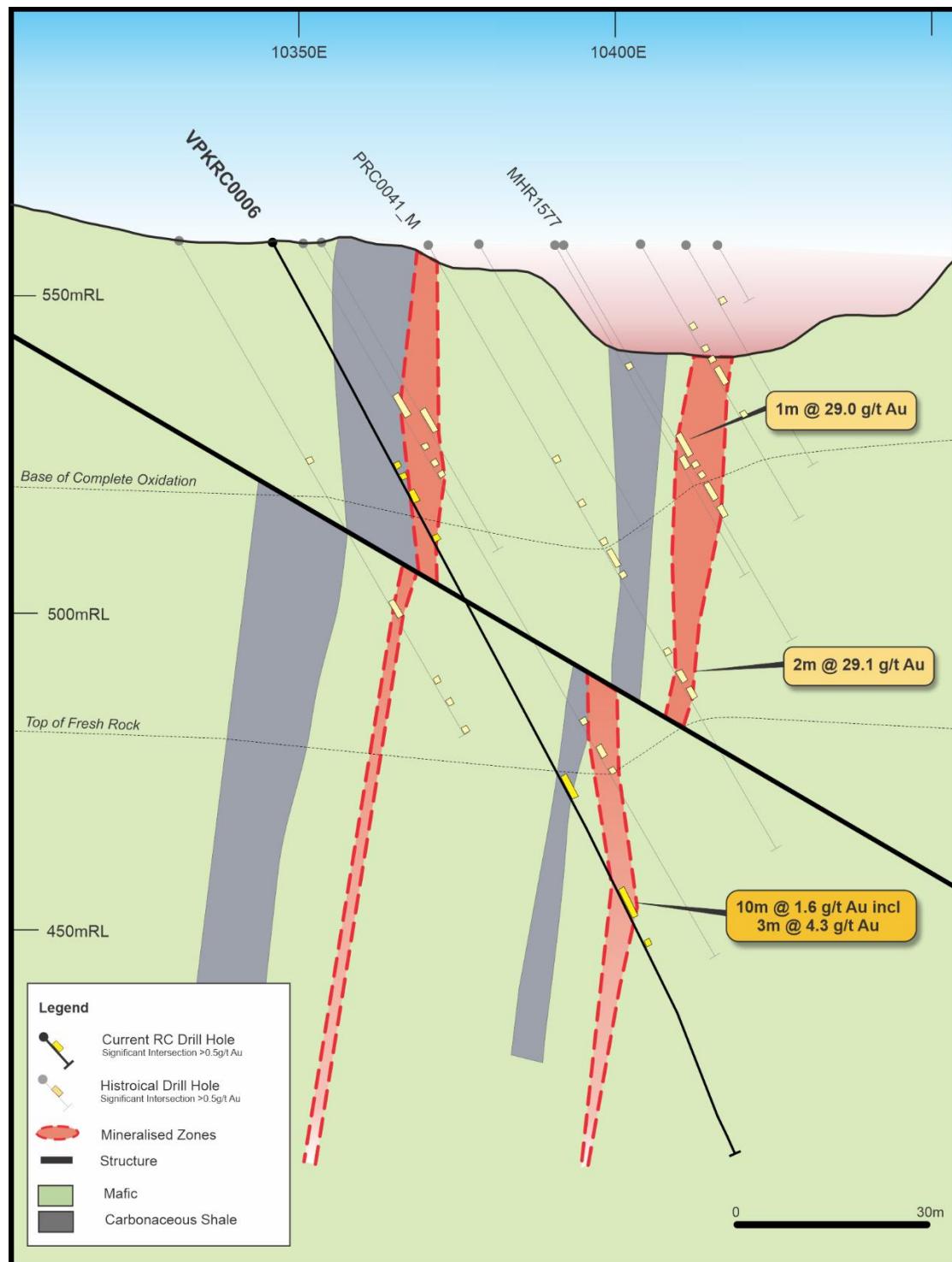


Figure 3 Cross-section Prickleys 12000mE

Table 1 Significant intercepts Phase 1 drilling Prickleys.

Hole ID	From	To	Width	Au
VPKRC0001	31	32	1	1.0
VPKRC0002	116	118	2	0.7
incl	116	117	1	1.0
VPKRC0002	128	138	10	0.3
incl	134	135	1	1.3
VPKRC0002	147	150	3	0.5
VPKRC0003	74	82	8	0.4
VPKRC0003	155	156	1	0.6
VPKRC0003	169	170	1	0.7
VPKRC0004	87	91	4	0.5
VPKRC0004	100	103	3	0.8
incl	102	103	1	1.4
VPKRC0004	139	145	6	0.5
incl	143	144	1	1.2
VPKRC0005	150	163	13	0.7
incl	153	154	1	2.6
VPKRC0006	38	48	10	0.5
VPKRC0006	53	54	1	1.4
VPKRC0006	116	126	10	1.6
incl	116	119	3	4.3
VPKRC0007	45	49	4	1.0
incl	48	49	1	3.5
VPKRC0007	72	83	11	0.4
incl	78	79	1	1.2
VPKRC0008	48	49	1	0.6
VPKRC0008	73	75	2	0.6

Table 2 2021 Drilling Prickleys Collar information

Hole ID	MGA_N	MGA_E	RL	North	East	Depth	Dip	Az	Pit
VPKRC0001	7216123	772995	636	10378.2	12442.5	34	-55.0	145.0	Prickleys
VPKRC0002	7216158	772983	636	10343.1	12454.1	186	-62.1	143.4	Prickleys
VPKRC0003	7216132	772998	636	10372.8	12450.3	181	-55.6	141.8	Prickleys
VPKRC0004	7215932	772680	636	10339.8	12076.4	163	-61.6	139.9	Prickleys
VPKRC0005	7215914	772657	636	10340.2	12047.2	168	-81.8	148.7	Prickleys
VPKRC0006	7215882	772624	636	10345.8	12001.6	162	-61.0	140.5	Prickleys
VPKRC0007	7215841	772589	636	10357.2	11948.9	168	-61.1	141.9	Prickleys
VPKRC0008	7215875	772591	636	10331.4	11971.1	168	-75.9	140.7	Prickleys

2021 Drilling Campaign Progress and Next Steps

Vango is targeting 11 priority open-pits in its 2021 drilling campaign. Drilling is designed to add resources to the substantial existing Marymia resource base, and to deliver 'critical mass' to Marymia's resource base to support a proposed stand-alone mining operation at the Project.

The first phase of drilling in all 11 open pits has now been completed and consisted of 8,914 metres of RC drilling across 56 holes. All results have now been reported from first-phase drilling at the Skyhawk, Parrot, Apollo and Prickleys open pits, and results from drilling at the remaining 7 open-pits will be progressively released as they become available.

Vango plans to conduct a follow-up, second phase of drilling at all targets that deliver positive results in the completed first round of drilling, to test for further extensions of gold mineralisation to add to the Marymia resource base.

Authorised for release by the Board of Vango Mining Limited.

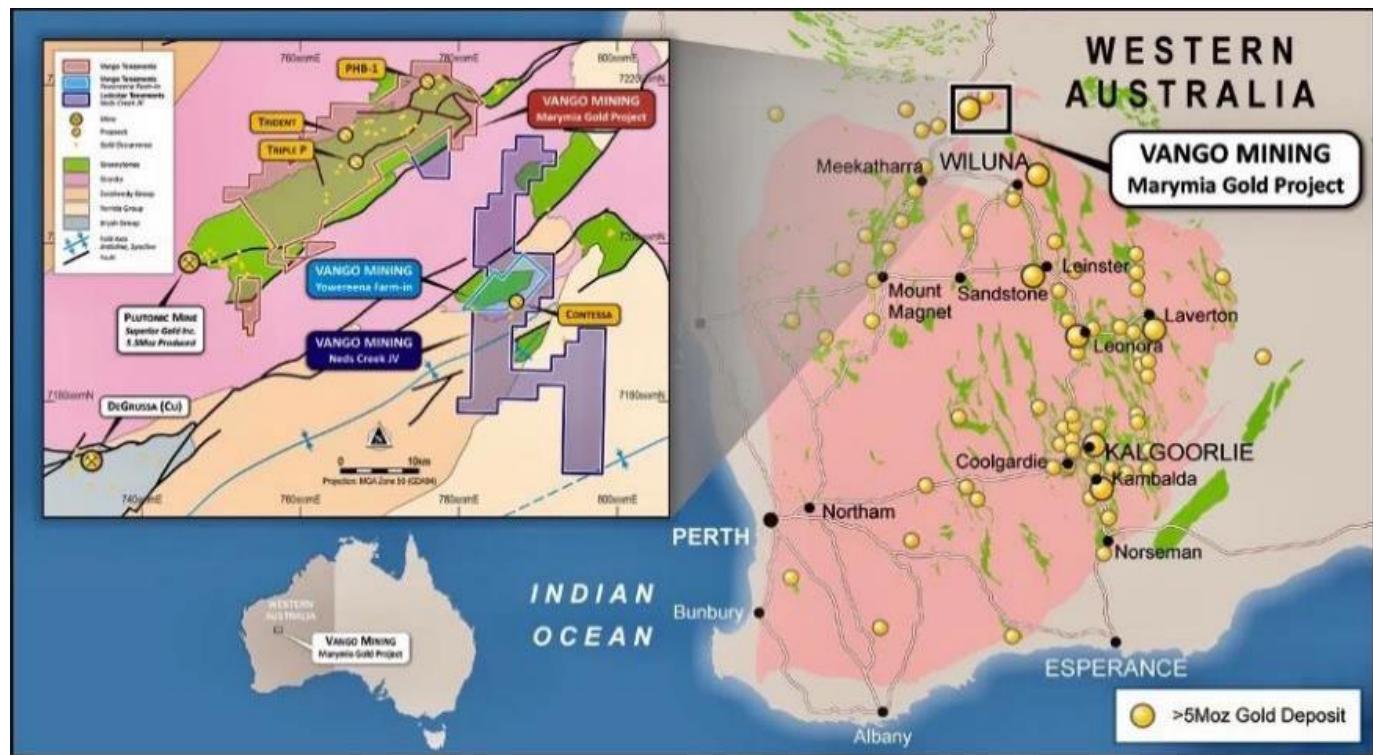
-ENDS-

For further information, contact:

Bruce McInnes	James Moses
Chairman	Investor Relations
info@vangomining.com	james@mandatecorporate.com.au
+61 418 183 466	+61 420 991 574

The information in this announcement is extracted from reports lodged as market announcements:

- TSX-V: SGI Superior Gold Inc., Corporate Website www.superior-gold.com
- ASX: VAN 18/04/2019 "New Trident High-Grade Resource Upgrade"
- ASX: VAN 20/05/2020 "Vango Mineral Increases to One Million Ounces"
- ASX: VAN 14/09/2021 "Drill Results Confirm Potential Open-Pit Model at Marymia"
- ASX: VAN 21/09/2021 "Wide High-Grade Gold Intercept at Skyhawk"
- ASX: VAN 20/10/2021 "Vango Continues to Confirm Open-Pit Potential at Marymia"


The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

About Vango Mining

Vango Mining Limited (ASX: VAN) is a minerals exploration mining company with ambitions of becoming a high-grade WA gold miner by developing the 100% owned Marymia Gold Project (**Marymia**) in the mid-west region of Western Australia. The Project comprises 45 granted mining leases over 300km. It has an established high-grade resource of 1Moz @ 3g/t Au[^], underpinned by the Trident Deposit, whose resource is 410koz @ 8g/t Au, with immediate extensions open at depth/along strike.

The Marymia Project has the potential to become one of Australia's largest high-grade producers. The Greenstone Belt in the Marymia region includes six major gold corridors, which remain largely un-tested beyond 100m depth - supported with an extensive drilling and geophysical database. Previous mining between 1992-2001, produced 580,000 ounces of gold almost entirely from open-pits.

Vango is focused on growing its high-grade gold resource to support a proposed stand-alone gold mining and production operation at Marymia. The Project is located along strike, immediately to the north of Superior Gold's (TSX-V: SGI) Plutonic Gold Mine which has produced more than 5.5Moz of gold¹.

Figure 4: Location of Marymia Gold Project in the Yilgarn block of Western Australia.

JORC compliant Mineral Resource Estimate (ASX Announcement dated 20 May 2020[^])

MARYMIA GOLD PROJECT JORC 2012 MINERAL RESOURCE ESTIMATE - MAY 2020										
Deposit	Cut-off	Indicated			Inferred			Total		
Mineral Resource	Au g/t	Kt	g/t	Koz	Kt	g/t	Oz	Kt	g/t	Koz
Open Pits	0.5	5,300	1.8	311	2,950	1.6	150	8,250	1.7	461
Underground	3.0	1,142	9.6	352	992	5.9	189	2,134	7.9	541
Total		6,442	3.2	663	3,942	2.7	339	10,384	3.0	1,002

* VAN confirms all material assumptions and technical parameters underpinning the Resource Estimate and Reserve continue to apply, and have not materially changed as per Listing Rule 5.23.2

Mineral Resources reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (Joint Ore Reserves Committee Code – JORC 2012 Edition). Open pit resources reported within optimised conceptual pit shells at A\$2,500/oz gold price above a 0.5 g/t Au cut off and include oxide, transition and fresh material.

Trident underground resources are retained as first reported 18 April 2019¹ above a 3.0 g/t Au cut-off grade, and modelled at a gold price of A\$2,000/oz, on the basis that the information has not materially changed since last reported. Other underground resources reported above a 3.0 g/t Au cut off (with minor 2.5 g/t Au cut-off material included for continuity purposes) and includes fresh material only. Totals may differ due to rounding, Mineral Resources reported on a dry in-situ basis.

Competent Persons Statements

The Statement of Mineral Resource Estimates has been compiled by Dr. Spero Carras who is a full-time employee of Carras Mining Pty Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM"). Dr. Carras has sufficient experience, including over 40 years' experience in gold mine evaluation, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Dr. Carras consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The information in this report that relates to exploration results has been reviewed, compiled and fairly represented by Mr David Jenkins, a Member of the Australian Institute of Geologists and a full time employee of Terra Search Pty Ltd. Mr Jenkins has sufficient experience, including over 29 years' experience in exploration and resource evaluation relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Jenkins consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

Table 3 Historical Drill collars Prickleys

Hole ID	MGA_N	MGA_E	RL	North	East	Depth	Dip	Az
MHR1031	772900.6	7216026	636.1	10398.5	12307.8	53	-60	142
MHR1505A	772733.4	7215916	637.3	10384.5	12108.6	62	-60	142
MHR1577	772658.6	7215851	636.9	10391.8	12009.2	72	-60	142
MRC1015D	772898	7216030	636.1	10394.0	12308.0	152	-60	142
PCRC0009	773063.2	7216072	639.7	10460.3	12465.0	72	-60	142
PRC0016_M	773048.3	7216066	638.8	10455.5	12449.9	80	-60	142
PRC0019_M	773064.9	7216086	639.4	10450.0	12474.9	70	-60	142
PRC0041_M	772638.5	7215862	636.8	10370.4	12000.2	110	-60	142
PRC0057_M	772728	7215909	637.4	10386.9	12100.0	80	-60	142
PRC0104_M	772769.9	7215937	636.8	10390.2	12150.1	65	-60	142
PRD0001	773063.5	7216087	639.4	10448.7	12474.2	78	-60	142
PRD0002	773047.3	7216067	638.9	10454.6	12449.3	78	-60	142

Table 4 Significant Assays current drilling

Hole	Sample	From	To	Data Type	Au	Au1
VPKRC0001	5212091	29	30	INT	0.109	
VPKRC0001	5212092	30	31	INT	0.034	
VPKRC0001	5212093	31	32	INT	1.027	
VPKRC0001	5212094	32	33	INT	0.088	
VPKRC0002	2021328	0	3	COMP	0.183	
VPKRC0002	5212209	95	96	INT	0.028	
VPKRC0002	5212210	96	97	INT	0.221	0.346
VPKRC0002	5212211	97	98	INT	0.337	
VPKRC0002	5212212	98	99	INT	0.133	
VPKRC0002	5212213	99	100	INT	0.165	
VPKRC0002	5212231	114	115	INT	0.026	
VPKRC0002	5212232	115	116	INT	0.053	
VPKRC0002	5212233	116	117	INT	1.028	1.076
VPKRC0002	5212234	117	118	INT	0.358	
VPKRC0002	5212235	118	119	INT	0.047	
VPKRC0002	5212236	119	120	INT	0.083	
VPKRC0002	5212246	126	127	INT	0.074	
VPKRC0002	5212247	127	128	INT	0.293	
VPKRC0002	5212248	128	129	INT	0.362	
VPKRC0002	5212249	129	130	INT	0.349	
VPKRC0002	5212250	130	131	INT	0.13	
VPKRC0002	5212251	131	132	INT	0.044	
VPKRC0002	5212252	132	133	INT	0.033	
VPKRC0002	5212253	133	134	INT	0.108	
VPKRC0002	5212254	134	135	INT	1.309	0.376
VPKRC0002	5212255	135	136	INT	0.241	

Hole	Sample	From	To	Data Type	Au	Au1
VPKRC0002	5212256	136	137	INT	0.35	
VPKRC0002	5212257	137	138	INT	0.329	
VPKRC0002	5212258	138	139	INT	0.045	
VPKRC0002	5212261	139	140	DUP	0.073	
VPKRC0002	5212268	145	146	INT	0.112	
VPKRC0002	5212269	146	147	INT	0.299	
VPKRC0002	5212270	147	148	INT	0.57	
VPKRC0002	5212271	148	149	INT	0.11	
VPKRC0002	5212272	149	150	INT	0.813	0.668
VPKRC0002	5212273	150	151	INT	0.209	
VPKRC0002	5212274	151	152	INT	0.088	
VPKRC0003	2021355	34	38	COMP	0.188	
VPKRC0003	5212359	38	39	INT	0.3	
VPKRC0003	5212361	38	39	DUP	0.45	
VPKRC0003	2021356	39	43	COMP	-0.005	
VPKRC0003	2021357	43	47	COMP	0.079	
VPKRC0003	2021363	68	72	COMP	0.18	
VPKRC0003	5212401	72	73	DUP	0.221	
VPKRC0003	5212399	72	73	INT	0.326	
VPKRC0003	2021364	73	77	COMP	0.301	
VPKRC0003	5212403	73	74	INT	0.167	
VPKRC0003	5212404	74	75	INT	0.338	
VPKRC0003	5212405	75	76	INT	0.25	
VPKRC0003	5212406	76	77	INT	0.442	
VPKRC0003	5212407	77	78	INT	0.62	
VPKRC0003	5212408	78	79	INT	0.16	
VPKRC0003	5212409	79	80	INT	0.214	
VPKRC0003	5212410	80	81	INT	0.34	
VPKRC0003	5212411	81	82	INT	0.454	
VPKRC0003	5212412	82	83	INT	0.063	
VPKRC0003	5212413	83	84	INT	0.088	
VPKRC0003	5212414	84	85	INT	0.084	
VPKRC0003	5212415	85	86	INT	0.054	
VPKRC0003	5212416	86	87	INT	0.451	
VPKRC0003	5212417	87	88	INT	0.186	
VPKRC0003	5212418	88	89	INT	0.119	
VPKRC0003	5212427	94	95	INT	0.205	
VPKRC0003	5212428	95	96	INT	0.08	
VPKRC0003	5212429	96	97	INT	0.307	
VPKRC0003	5212430	97	98	INT	0.051	
VPKRC0003	5212431	98	99	INT	0.105	
VPKRC0003	5212443	107	108	INT	0.09	
VPKRC0003	5212444	108	109	INT	0.05	

Hole	Sample	From	To	Data Type	Au	Au1
VPKRC0003	5212445	109	110	INT	0.336	
VPKRC0003	5212446	110	111	INT	0.1	
VPKRC0003	5212447	111	112	INT	0.034	
VPKRC0003	5212454	118	119	INT	0.026	
VPKRC0003	5212455	119	120	INT	0.093	
VPKRC0003	5212456	120	121	INT	0.385	
VPKRC0003	5212457	121	122	INT	0.156	
VPKRC0003	5212458	122	123	INT	0.267	
VPKRC0003	5212495	153	154	INT	0.016	
VPKRC0003	5212496	154	155	INT	0.012	
VPKRC0003	5212497	155	156	INT	0.644	0.611
VPKRC0003	5212498	156	157	INT	0.146	
VPKRC0003	5212499	157	158	INT	0.082	
VPKRC0003	5212512	167	168	INT	0.019	
VPKRC0003	5212513	168	169	INT	0.057	
VPKRC0003	5212514	169	170	INT	0.731	0.785
VPKRC0003	5212515	170	171	INT	0.032	
VPKRC0003	5212516	171	172	INT	0.042	
VPKRC0004	5212629	85	86	INT	0.02	
VPKRC0004	5212630	86	87	INT	0.065	
VPKRC0004	5212631	87	88	INT	0.601	
VPKRC0004	5212632	88	89	INT	0.241	
VPKRC0004	5212633	89	90	INT	0.338	
VPKRC0004	5212634	90	91	INT	0.81	0.834
VPKRC0004	5212635	91	92	INT	0.147	
VPKRC0004	5212636	92	93	INT	0.062	
VPKRC0004	5212645	98	99	INT	0.055	
VPKRC0004	5212646	99	100	INT	0.095	
VPKRC0004	5212647	100	101	INT	0.809	0.991
VPKRC0004	5212648	101	102	INT	0.215	
VPKRC0004	5212649	102	103	INT	1.383	0.888
VPKRC0004	5212650	103	104	INT	0.147	
VPKRC0004	5212651	104	105	INT	0.039	
VPKRC0004	5212654	107	108	INT	0.29	
VPKRC0004	5212655	108	109	INT	0.128	
VPKRC0004	5212656	109	110	INT	0.398	
VPKRC0004	5212657	110	111	INT	0.245	
VPKRC0004	5212658	111	112	INT	0.037	
VPKRC0004	5212667	117	118	INT	0.039	
VPKRC0004	5212668	118	119	INT	0.277	
VPKRC0004	5212669	119	120	INT	0.315	
VPKRC0004	5212670	120	121	INT	0.197	
VPKRC0004	5212671	121	122	INT	0.273	

Hole	Sample	From	To	Data Type	Au	Au1
VPKRC0004	5212679	129	130	INT	0.091	
VPKRC0004	5212683	130	131	INT	0.022	
VPKRC0004	5212684	131	132	INT	0.355	
VPKRC0004	5212685	132	133	INT	0.154	
VPKRC0004	5212686	133	134	INT	0.293	
VPKRC0004	5212690	137	138	INT	0.046	
VPKRC0004	5212691	138	139	INT	0.03	
VPKRC0004	5212692	139	140	INT	0.333	
VPKRC0004	5212693	140	141	INT	0.492	
VPKRC0004	5212694	141	142	INT	0.127	
VPKRC0004	5212695	142	143	INT	0.309	
VPKRC0004	5212696	143	144	INT	1.211	1.316
VPKRC0004	5212697	144	145	INT	0.487	
VPKRC0004	5212698	145	146	INT	0.058	
VPKRC0004	5212701	146	147	DUP	0.036	
VPKRC0005	5212884	139	140	INT	0.025	
VPKRC0005	5212885	140	141	INT	0.201	
VPKRC0005	5212886	141	142	INT	0.511	
VPKRC0005	5212887	142	143	INT	0.326	
VPKRC0005	5212888	143	144	INT	0.138	
VPKRC0005	5212889	144	145	INT	0.423	
VPKRC0005	5212890	145	146	INT	0.148	
VPKRC0005	5212891	146	147	INT	0.176	
VPKRC0005	5212893	148	149	INT	0.138	
VPKRC0005	5212894	149	150	INT	0.147	
VPKRC0005	5212895	150	151	INT	0.63	
VPKRC0005	5212896	151	152	INT	0.424	
VPKRC0005	5212897	152	153	INT	0.329	
VPKRC0005	5212898	153	154	INT	2.558	
VPKRC0005	5212899	154	155	INT	0.987	
VPKRC0005	5212901	154	155	DUP	1.171	
VPKRC0005	5212903	155	156	INT	0.479	
VPKRC0005	5212904	156	157	INT	0.563	
VPKRC0005	5212905	157	158	INT	0.592	
VPKRC0005	5212906	158	159	INT	0.497	
VPKRC0005	5212907	159	160	INT	0.165	
VPKRC0005	5212908	160	161	INT	0.621	
VPKRC0005	5212909	161	162	INT	0.268	
VPKRC0005	5212910	162	163	INT	0.339	
VPKRC0005	5212911	163	164	INT	0.193	
VPKRC0005	5212912	164	165	INT	0.199	
VPKRC0005	5212914	166	167	INT	0.238	
VPKRC0005	5212915	167	168	INT	0.204	0.428143

Hole	Sample	From	To	Data Type	Au	Au1
VPKRC0005	5212916	168	169	INT	0.31	
VPKRC0006	5212917	0	1	INT	0.053	
VPKRC0006	5212918	1	2	INT	0.025	
VPKRC0006	5212959	36	37	INT	0.034	
VPKRC0006	5212961	36	37	DUP	0.048	
VPKRC0006	2021412	37	41	COMP	0.382	
VPKRC0006	5212963	37	38	INT	0.037	
VPKRC0006	5212964	38	39	INT	0.412	
VPKRC0006	5212965	39	40	INT	0.495	
VPKRC0006	5212966	40	41	INT	0.592	
VPKRC0006	2021413	41	45	COMP	0.324	
VPKRC0006	5212967	41	42	INT	0.049	
VPKRC0006	5212968	42	43	INT	0.684	
VPKRC0006	5212969	43	44	INT	0.295	
VPKRC0006	5212970	44	45	INT	0.128	
VPKRC0006	2021414	45	49	COMP	0.58	
VPKRC0006	5212971	45	46	INT	0.797	
VPKRC0006	5212972	46	47	INT	0.871	
VPKRC0006	5212973	47	48	INT	0.495	
VPKRC0006	5212974	48	49	INT	0.2	
VPKRC0006	2021415	49	53	COMP	0.194	
VPKRC0006	5212981	53	54	DUP	0.305	
VPKRC0006	5212979	53	54	INT	1.399	
VPKRC0006	2021416	54	58	COMP	0.17	
VPKRC0006	2021417	58	62	COMP	0.124	
VPKRC0006	2021423	83	87	COMP	0.055	
VPKRC0006	5213021	87	88	DUP	0.209	
VPKRC0006	5213019	87	88	INT	0.313	
VPKRC0006	2021424	88	92	COMP	0.028	
VPKRC0006	2021425	92	96	COMP	0.14	
VPKRC0006	2021426	96	100	COMP	0.553	
VPKRC0006	2021427	100	104	COMP	0.169	
VPKRC0006	5213041	104	105	DUP	0.126	
VPKRC0006	5213039	104	105	INT	0.245	
VPKRC0006	5213043	105	106	INT	0.465	
VPKRC0006	5213044	106	107	INT	0.058	
VPKRC0006	5213045	107	108	INT	0.074	
VPKRC0006	5213052	114	115	INT	0.043	
VPKRC0006	5213053	115	116	INT	0.215	
VPKRC0006	5213054	116	117	INT	3.96	
VPKRC0006	5213055	117	118	INT	2.953	
VPKRC0006	5213056	118	119	INT	5.866	6.215
VPKRC0006	5213057	119	120	INT	0.785	

Hole	Sample	From	To	Data Type	Au	Au1
VPKRC0006	5213058	120	121	INT	0.828	
VPKRC0006	5213059	121	122	INT	0.321	
VPKRC0006	5213061	121	122	DUP	0.565	
VPKRC0006	5213063	122	123	INT	0.163	
VPKRC0006	5213064	123	124	INT	0.061	
VPKRC0006	5213065	124	125	INT	0.355	
VPKRC0006	5213066	125	126	INT	0.754	
VPKRC0006	5213067	126	127	INT	0.114	
VPKRC0006	5213068	127	128	INT	0.092	
VPKRC0007	5213159	44	45	INT	0.076	
VPKRC0007	5213161	44	45	DUP	0.09	
VPKRC0007	2021441	45	49	COMP	0.97	
VPKRC0007	5213163	45	46	INT	0.316	
VPKRC0007	5213164	46	47	INT	0.053	
VPKRC0007	5213165	47	48	INT	0.062	
VPKRC0007	5213166	48	49	INT	3.492	
VPKRC0007	2021442	49	53	COMP	0.036	
VPKRC0007	2021443	53	57	COMP	0.061	
VPKRC0007	5213191	70	71	INT	0.29	
VPKRC0007	5213192	71	72	INT	0.181	
VPKRC0007	5213193	72	73	INT	0.48	
VPKRC0007	5213194	73	74	INT	0.151	
VPKRC0007	2021448	74	78	COMP	0.287	
VPKRC0007	5213195	74	75	INT	0.124	
VPKRC0007	5213196	75	76	INT	0.138	
VPKRC0007	5213197	76	77	INT	0.555	
VPKRC0007	5213198	77	78	INT	0.309	
VPKRC0007	5213201	78	79	DUP	0.277	
VPKRC0007	5213199	78	79	INT	1.21	
VPKRC0007	2021449	79	83	COMP	0.271	
VPKRC0007	5213203	79	80	INT	0.132	
VPKRC0007	5213204	80	81	INT	0.164	
VPKRC0007	5213205	81	82	INT	0.478	
VPKRC0007	5213206	82	83	INT	0.423	
VPKRC0007	2021450	83	87	COMP	0.121	
VPKRC0007	2021451	87	91	COMP	0.033	
VPKRC0008	2021469	47	51	COMP	0.243	
VPKRC0008	5213363	47	48	INT	0.103	
VPKRC0008	5213364	48	49	INT	0.558	
VPKRC0008	5213365	49	50	INT	0.239	
VPKRC0008	5213366	50	51	INT	0.016	
VPKRC0008	5213390	71	72	INT	0.104	
VPKRC0008	5213391	72	73	INT	0.069	

Hole	Sample	From	To	Data Type	Au	Au1
VPKRC0008	5213392	73	74	INT	0.79	
VPKRC0008	5213393	74	75	INT	0.309	
VPKRC0008	5213394	75	76	INT	0.023	
VPKRC0008	5213395	76	77	INT	0.016	

JORC Code, 2012 Edition: Table 1
Section 1: Sampling Techniques and Data
(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> RC Drilling assays are from 1m samples cone split on the cyclone for the key intercepts. 4m composites from these 1m splits are taken in zones of lower prospectivity at the Laboratory. Where the composite samples return > 0.2g/t Au, they are re-assayed on 1m intervals Historical drilling has been sampled on a 1m basis. By Resolute and Barrick Gold – split at rig. Duplicates are taken of the second quarter of core every 20 samples to ensure the samples were representative.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Face Sampling, Reverse Circulation hammer
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> RC drilling was bagged on 1m intervals and an estimate of sample recovery has been made on the size of each sample.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> Reverse Circulation holes are being logged on 1m intervals

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise samples representivity</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> Duplicates taken every 20 samples by sampling a second quarter of the NQ core, or from a second split directly from cyclone. Standards submitted every 20 samples of tenor similar to those expected in the sampling. Cone splitter on the cyclone was used to produce a 1m sub-sample on the RC rig. Blanks were inserted every 20 samples also In un-prospective lithologies these 1m samples were composited at the lab over 4m intervals.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> Samples analysed at Intertek Laboratories in Perth, WA, using a 50g Fire Assay method. Samples are dried, crushed and pulverised prior to analysis. Barrick Gold assays at Amdel labs at their Plutonic site
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> Intercepts have been calculated generally using a 0.3g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 0.3g/t. All repeats and duplicates have been included. Historical work has been cross referenced against WAMEX reports A47532 (Resolute) and A68298 (Barrick)
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> DGPS has been used to locate the drillholes. REFLEX Gyro Tool used for downhole surveys on all holes
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> 	<ul style="list-style-type: none"> Sample data down hole is at no more than 1m intervals Data spacing varies from approx. 20m Assessment as to whether sufficient data has been generated to establish the degree of geological and grade continuity appropriate for

Criteria	JORC Code explanation	Commentary
		Mineral Resource and estimation procedure(s) is underway and, if necessary, additional drilling will be carried out to establish continuity.
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> • Intercepts given are downhole widths with the true widths not determined.
<i>Sample security</i>	<ul style="list-style-type: none"> • The measures taken to ensure sample security. 	<ul style="list-style-type: none"> • Samples sealed in bulk bag with Security seal, unbroken when delivered to lab
<i>Audits or reviews</i>	<ul style="list-style-type: none"> • The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> • Review of standards, blanks and Duplicates indicate sampling and analysis has been effective for current and historical drilling where QA/QC has been available

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> Located in the Marymia - Plutonic Greenstone Belt ~218km northeast of Meekatharra in the Midwest mining district in WA Prickleys M52/235 granted tenement in good standing. The tenements predate Native title interests, but are covered by the Gingirana Native Title claim The tenements are 100% owned by Vango Mining Limited and subsidiary Dampier Plutonic Pty Ltd. Gold production will be subject to a 1-4% royalty dependent on gold price (Currently 2%) capped at \$2M across the entire project area. Contingent production payments of up to \$4M across the entire project area.
<i>Exploration done by other parties.</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Extensive previous work by Resolute Mining, Barrick Gold
<i>Geology</i>	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	
<i>Drill hole Information</i>	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly</i> 	<ul style="list-style-type: none"> Location of new drillholes based on surveyed sites, and DGPS, summarised in Table 2 and shown on Figures 1 and 2. Location of previous Drillholes based on historical reports and data, originally located on surveyed sites, and DGPS. Northing and easting data generally within 0.1m accuracy RL data +-0.2m Down hole length =+- 0.1 m

Criteria	JORC Code explanation	Commentary
	<p><i>explain why this is the case.</i></p> <p>Data aggregation methods</p> <ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> Intercepts have been calculated generally using a 1 g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. All Duplicates and repeats are included No upper cut off has been applied to intersections.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <ul style="list-style-type: none"> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> Orientation of mineralised zones are still to be ascertained by follow up drilling.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Appropriate cross-sectional and plan view of the drilling are included. See Tables 1 & 4, summary of drilling intersections and Tables 2 & 3, drillhole locations, all significant assays, with repeats and duplicates.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> See Tables 1 & 4, summary of drilling intersections and Tables 2 & 3, drillhole, all significant assays, with repeats and duplicates.
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> Geological interpretations are included on plan views (Figures 1, 2), sectional view (Figures 3, 4) No new exploration data has been generated apart from the drilling information included in this report.
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> 	<ul style="list-style-type: none"> Extensive further drilling is planned for the project

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	

Table 5 Selected Assays Historical Drilling Prickleys

Hole_ID	Sample	Drill Type	From	To	Au	Au1
MHR1031	MA_103412A	RAB	36	40	0.005	
MHR1031	MA_102505A	RAB	40	41	0.44	
MHR1031	MA_102506A	RAB	41	42	1.51	
MHR1031	MA_102507A	RAB	42	43	0.61	
MHR1031	MA_102508A	RAB	43	44	0.99	
MHR1031	MA_102509A	RAB	44	45	1.7	
MHR1031	MA_102510A	RAB	45	46	2.15	
MHR1031	MA_102511A	RAB	46	47	2.42	
MHR1031	MA_102512A	RAB	47	48	2.98	
MHR1031	MA_102513A	RAB	48	49	2.21	
MHR1031	MA_102514A	RAB	49	50	2.74	
MHR1031	MA_102515A	RAB	50	51	4.65	
MHR1031	MA_102516A	RAB	51	52	4.48	
MHR1031	MA_102517A	RAB	52	53	4.11	
MHR1505A	MA_130733A	RAB	48	49	0.13	
MHR1505A	MA_130734A	RAB	49	50	0.23	
MHR1505A	MA_130735A	RAB	50	51	0.18	
MHR1505A	MA_130736A	RAB	51	52	1.18	
MHR1505A	MA_130737A	RAB	52	53	9.74	
MHR1505A	MA_130738A	RAB	53	54	9.6	
MHR1505A	MA_130739A	RAB	54	55	6.78	
MHR1505A	MA_130740A	RAB	55	56	3.03	
MHR1505A	MA_130741A	RAB	56	57	0.46	
MHR1505A	MA_130742A	RAB	57	58	0.29	
MHR1505A	MA_130743A	RAB	58	59	0.21	
MHR1505A	MA_130744A	RAB	59	60	0.22	
MHR1505A	MA_130745A	RAB	60	61	0.38	
MHR1577	MA_136145A	RAB	32	33	0.02	
MHR1577	MA_136146A	RAB	33	34	0.2	
MHR1577	MA_136147A	RAB	34	35	0.04	
MHR1577	MA_136148A	RAB	35	36	0.57	
MHR1577	MA_136149A	RAB	36	37	29	
MHR1577	MA_136150A	RAB	37	38	0.62	
MHR1577	MA_136151A	RAB	38	39	0.51	
MHR1577	MA_136152A	RAB	39	40	0.16	
MHR1577	MA_136153A	RAB	40	41	0.78	

Hole_ID	Sample	Drill Type	From	To	Au	Au1
MHR1577	MA_136154A	RAB	41	42	0.23	
MRC1015D	MA_120603	DD	38	39	0.005	
MRC1015D	MA_120604	DD	39	40	0.005	
MRC1015D	MA_120605	DD	40	41	0.1	
MRC1015D	MA_120606	DD	41	42	0.005	
MRC1015D	MA_120607	DD	42	43	0.005	
MRC1015D	MA_120608	DD	43	44	5.44	
MRC1015D	MA_120609	DD	44	45	3.86	
MRC1015D	MA_120610	DD	45	46	2	
MRC1015D	MA_120611	DD	46	47	2.91	
MRC1015D	MA_120612	DD	47	48	4.02	
MRC1015D	MA_120613	DD	48	49	3.82	
MRC1015D	MA_120614	DD	49	50	12.8	
MRC1015D	MA_120615	DD	50	51	21.2	
MRC1015D	MA_120616	DD	51	52	0.92	
MRC1015D	MA_120617	DD	52	53	0.21	
MRC1015D	MA_120618	DD	53	54	0.11	
MRC1015D	MA_120619	DD	54	55	0.05	
MRC1015D	MA_120620	DD	55	56	0.05	
PCRC0009	L47992	RC	51	52	0.05	
PCRC0009	L47993	RC	52	53	0.13	
PCRC0009	L47994	RC	53	54	0.24	
PCRC0009	L47995	RC	54	55	0.38	0.32
PCRC0009	L47996	RC	55	56	0.84	0.67
PCRC0009	L47997	RC	56	57	8.1	7.29
PCRC0009	L47998	RC	57	58	12.6	13.22
PCRC0009	L47999	RC	58	59	0.99	0.9
PCRC0009	L48000	RC	59	60	1.71	1.88
PCRC0009	L48001	RC	60	61	1.33	1.06
PCRC0009	L48002	RC	61	62	5.02	3.33
PCRC0009	L48003	RC	62	63	0.1	0.4
PCRC0009	L48004	RC	63	64	0.09	
PCRC0009	L48005	RC	64	65	0.04	
PCRC0009	L48006	RC	65	66	0.04	
PCRC0009	L48007	RC	66	67	0.13	
PRC0016_M	MA_139690	RC	39	40	0.59	
PRC0016_M	MA_139691	RC	40	41	0.55	
PRC0016_M	MA_139692	RC	41	42	0.84	
PRC0016_M	MA_139693	RC	42	43	0.47	
PRC0016_M	MA_139694	RC	43	44	0.29	
PRC0016_M	MA_139695	RC	44	45	1.89	
PRC0016_M	MA_139696	RC	45	46	16.3	
PRC0016_M	MA_139697	RC	46	47	35.8	
PRC0016_M	MA_139698	RC	47	48	2.45	

Hole_ID	Sample	Drill Type	From	To	Au	Au1
PRC0016_M	MA_139699	RC	48	49	39.5	
PRC0016_M	MA_139700	RC	49	50	64.2	
PRC0016_M	MA_139701	RC	50	51	2.43	
PRC0016_M	MA_139702	RC	51	52	3.41	
PRC0016_M	MA_139703	RC	52	53	2.02	
PRC0016_M	MA_139704	RC	53	54	1.17	
PRC0016_M	MA_139705	RC	54	55	2.25	
PRC0016_M	MA_139706	RC	55	56	0.89	
PRC0016_M	MA_139707	RC	56	57	13.7	
PRC0016_M	MA_139708	RC	57	58	6.16	
PRC0016_M	MA_139709	RC	58	59	0.14	
PRC0016_M	MA_139710	RC	59	60	0.1	
PRC0016_M	MA_139711	RC	60	61	0.68	
PRC0016_M	MA_139712	RC	61	62	0.8	
PRC0016_M	MA_139713	RC	62	63	0.12	
PRC0019_M	MA_139944	RC	43	44	0.12	
PRC0019_M	MA_139945	RC	44	45	0.06	
PRC0019_M	MA_139946	RC	45	46	0.32	
PRC0019_M	MA_139947	RC	46	47	0.49	
PRC0019_M	MA_139948	RC	47	48	0.11	
PRC0019_M	MA_139949	RC	48	49	2.58	
PRC0019_M	MA_139950	RC	49	50	1.06	
PRC0019_M	MA_139951	RC	50	51	7.41	
PRC0019_M	MA_139952	RC	51	52	3.37	
PRC0019_M	MA_139953	RC	52	53	0.78	
PRC0019_M	MA_139954	RC	53	54	1.33	
PRC0019_M	MA_139955	RC	54	55	0.18	
PRC0019_M	MA_139956	RC	55	56	0.13	
PRC0019_M	MA_139957	RC	56	57	1.96	
PRC0019_M	MA_139958	RC	57	58	0.25	
PRC0019_M	MA_139959	RC	58	59	1.33	
PRC0019_M	MA_139960	RC	59	60	3.75	
PRC0019_M	MA_139961	RC	60	61	2.06	
PRC0019_M	MA_139962	RC	61	62	1.25	
PRC0019_M	MA_139963	RC	62	63	4.99	
PRC0019_M	MA_139964	RC	63	64	0.44	
PRC0019_M	MA_139965	RC	64	65	0.33	
PRC0019_M	MA_139966	RC	65	66	2.48	
PRC0019_M	MA_139967	RC	66	67	2.04	
PRC0019_M	MA_139968	RC	67	68	2.27	
PRC0019_M	MA_139969	RC	68	69	1.19	
PRC0019_M	MA_139970	RC	69	70	0.69	
PRC0041_M	MA_153448	RC	73	74	0.15	
PRC0041_M	MA_153449	RC	74	75	0.52	

Hole_ID	Sample	Drill Type	From	To	Au	Au1
PRC0041_M	MA_153450	RC	75	76	0.25	
PRC0041_M	MA_153451	RC	76	77	0.27	
PRC0041_M	MA_153452	RC	77	78	0.37	
PRC0041_M	MA_153453	RC	78	79	56.2	
PRC0041_M	MA_153454	RC	79	80	1.91	
PRC0041_M	MA_153455	RC	80	81	0.37	
PRC0041_M	MA_153456	RC	81	82	0.62	
PRC0041_M	MA_153457	RC	82	83	0.77	
PRC0041_M	MA_153458	RC	83	84	0.19	
PRC0041_M	MA_153459	RC	84	85	0.13	
PRC0057_M	MA_154444	RC	37	38	0.76	
PRC0057_M	MA_154445	RC	38	39	1.33	
PRC0057_M	MA_154446	RC	39	40	0.51	
PRC0057_M	MA_154447	RC	40	41	0.23	
PRC0057_M	MA_154448	RC	41	42	0.41	
PRC0057_M	MA_154449	RC	42	43	1.11	
PRC0057_M	MA_154450	RC	43	44	12	
PRC0057_M	MA_154451	RC	44	45	4.13	
PRC0057_M	MA_154452	RC	45	46	11.5	
PRC0057_M	MA_154453	RC	46	47	2.39	
PRC0057_M	MA_154454	RC	47	48	1.36	
PRC0057_M	MA_154455	RC	48	49	0.52	
PRC0057_M	MA_154456	RC	49	50	1.55	
PRC0057_M	MA_154457	RC	50	51	0.23	
PRC0057_M	MA_154458	RC	51	52	0.14	
PRC0057_M	MA_154459	RC	52	53	0.07	
PRC0057_M	MA_154460	RC	53	54	0.04	
PRC0057_M	MA_154461	RC	54	55	0.09	
PRC0104_M	MA_177361	RC	36	37	0.01	
PRC0104_M	MA_177362	RC	37	38	0.17	
PRC0104_M	MA_177363	RC	38	39	0.19	
PRC0104_M	MA_177364	RC	39	40	0.27	
PRC0104_M	MA_177365	RC	40	41	0.71	
PRC0104_M	MA_177366	RC	41	42	1.96	
PRC0104_M	MA_177367	RC	42	43	29.9	
PRC0104_M	MA_177368	RC	43	44	6.04	
PRC0104_M	MA_177369	RC	44	45	3.72	
PRC0104_M	MA_177370	RC	45	46	4.96	
PRC0104_M	MA_177371	RC	46	47	3.17	
PRC0104_M	MA_177372	RC	47	48	0.66	
PRC0104_M	MA_177373	RC	48	49	0.48	
PRC0104_M	MA_177374	RC	49	50	0.04	
PRC0104_M	MA_177375	RC	50	51	0.03	
PRC0104_M	MA_177376	RC	51	52	0.13	

Hole_ID	Sample	Drill Type	From	To	Au	Au1
PRD0001	MA_156207	DD	46	47	0.01	
PRD0001	MA_156208	DD	47	48	0.07	
PRD0001	MA_156209	DD	48	49	0.51	
PRD0001	MA_156210	DD	49	50	0.7	
PRD0001	MA_156211	DD	50	51	0.94	
PRD0001	MA_156212	DD	51	52	10.6	
PRD0001	MA_156213	DD	52	53	3.93	
PRD0001	MA_156214	DD	53	54	3.67	
PRD0001	MA_156215	DD	54	55	0.94	
PRD0001	MA_156216	DD	55	56	0.38	
PRD0001	MA_156217	DD	56	57	2.03	
PRD0001	MA_156218	DD	57	58	7.57	
PRD0001	MA_156219	DD	58	59	1.03	
PRD0001	MA_156220	DD	59	60	2.84	
PRD0001	MA_156221	DD	60	61	7.38	
PRD0001	MA_156222	DD	61	62	0.91	
PRD0001	MA_156223	DD	62	63	1.21	
PRD0001	MA_156224	DD	63	64	0.16	
PRD0001	MA_156225	DD	64	65	0.19	
PRD0001	MA_156226	DD	65	66	7.01	
PRD0001	MA_156227	DD	66	67	2.17	
PRD0001	MA_156228	DD	67	68	1.15	
PRD0001	MA_156229	DD	68	69	1.56	
PRD0001	MA_156230	DD	69	70	0.34	
PRD0001	MA_156231	DD	70	71	0.91	
PRD0001	MA_156232	DD	71	72	0.21	
PRD0001	MA_156233	DD	72	73	5.98	
PRD0001	MA_156234	DD	73	74	0.09	
PRD0002	MA_156258	DD	39	40	0.08	
PRD0002	MA_156259	DD	40	41	0.35	
PRD0002	MA_156260	DD	41	42	1.5	
PRD0002	MA_156261	DD	42	43	0.61	
PRD0002	MA_156262	DD	43	44	0.41	
PRD0002	MA_156263	DD	44	45	1.08	
PRD0002	MA_156264	DD	45	46	0.64	
PRD0002	MA_156265	DD	46	47	0.93	
PRD0002	MA_156266	DD	47	48	7.19	
PRD0002	MA_156267	DD	48	49	2.38	
PRD0002	MA_156268	DD	49	50	30.8	
PRD0002	MA_156269	DD	50	51	75.6	
PRD0002	MA_156270	DD	51	52	8.1	
PRD0002	MA_156271	DD	52	53	4.33	
PRD0002	MA_156272	DD	53	54	2.49	
PRD0002	MA_156273	DD	54	55	4.76	

Hole_ID	Sample	Drill Type	From	To	Au	Au1
PRD0002	MA_156274	DD	55	56	0.45	
PRD0002	MA_156275	DD	56	57	0.28	
PRD0002	MA_156276	DD	57	58	1.03	
PRD0002	MA_156277	DD	58	59	1.62	
PRD0002	MA_156278	DD	59	60	0.16	
PRD0002	MA_156279	DD	60	61	0.06	
PRD0002	MA_156280	DD	61	62	0.19	
PRD0002	MA_156281	DD	62	63	0.32	
PRD0002	MA_156282	DD	63	64	0.24	