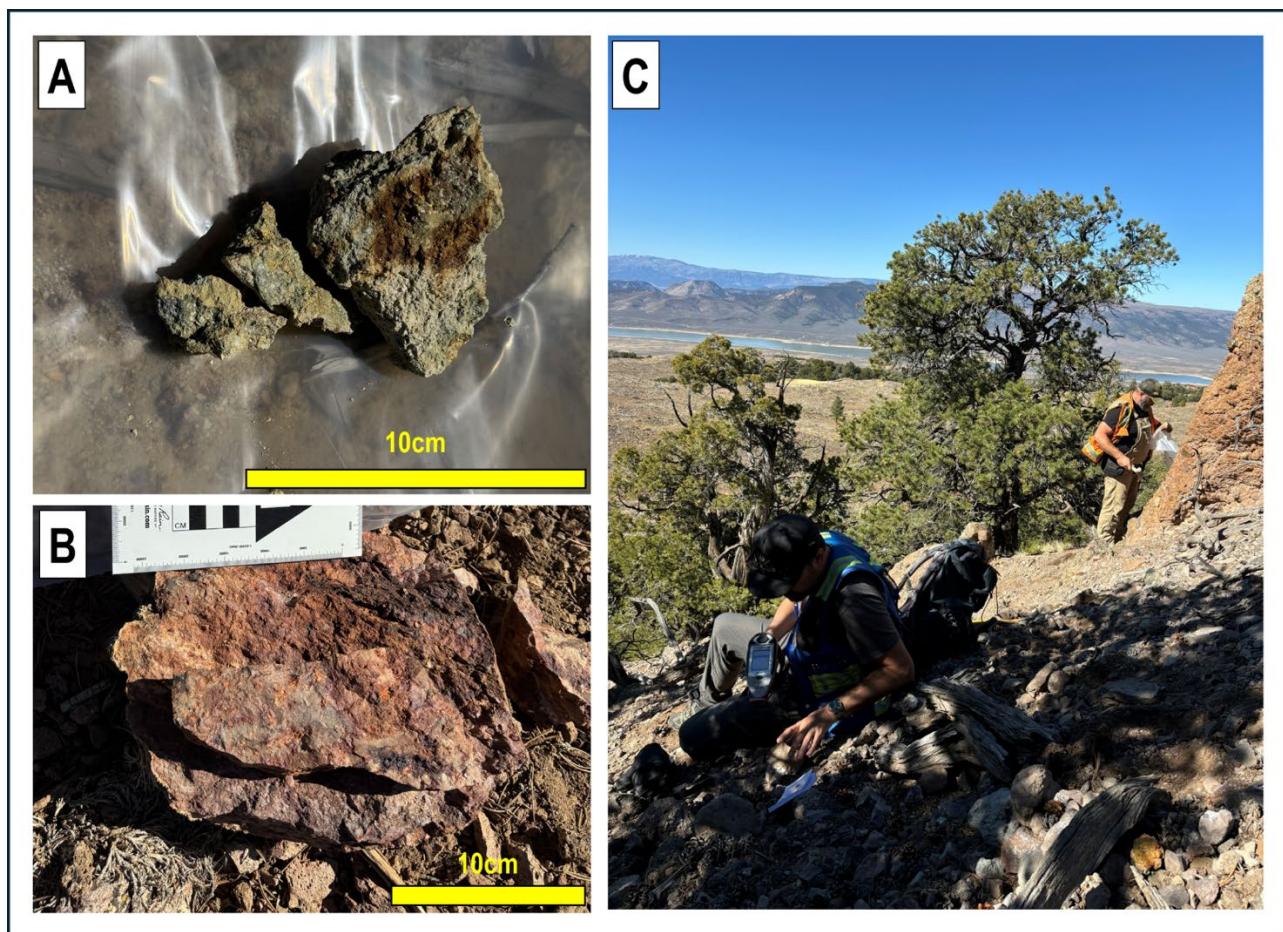


SUCCESSFUL FIELD RESULTS AT UTAH ANTIMONY PROJECT LEADS TO EXPANSION

HIGHLIGHTS

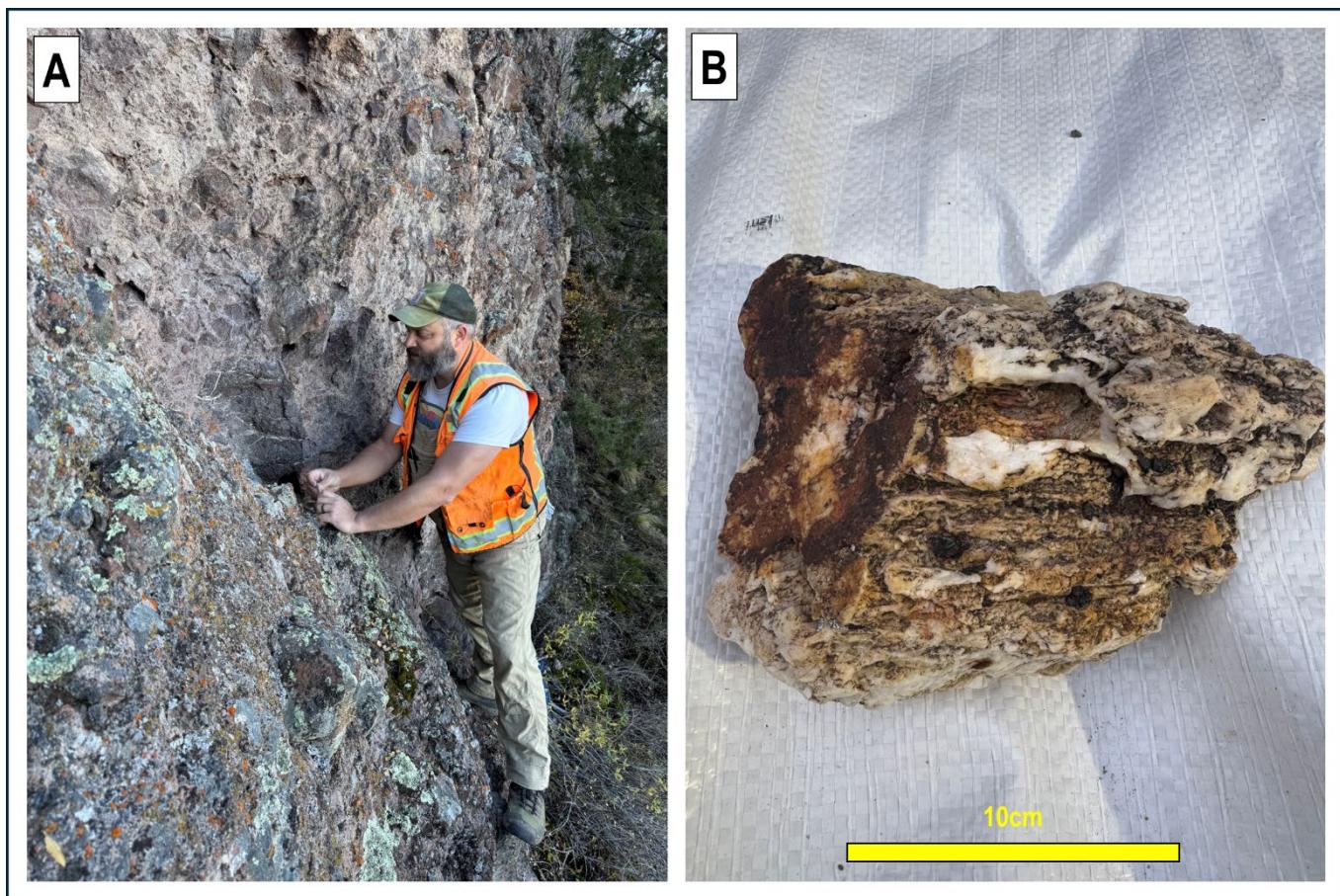
- Highly encouraging results from field program at the Utah Antimony Project supports Red Mountain's Antimony exploration model and leads to additional expansion of claims
- Red Mountain's Utah Antimony Project directly adjoins American Tungsten and Antimony Ltd's (ASX: AT4; Market Cap \$152 million) Antimony Canyon Project (ACP), one of the largest and highest-grade antimony projects in the USA, with a defined conceptual Exploration Target of 12.8 to 15.6 Mt @ 0.75% to 1.5% Sb, containing between 96,000 to 234,000 tonnes of Antimony metal¹
- Mapping analysis undertaken by Red Mountain strongly suggests that both the same type of host rocks and extensions of the large epithermal Antimony mineralising system targeted by AT4 at Antimony Canyon are present within Red Mountain's project area
- Red Mountain has acquired 19 additional claims which cover the further southern extension of the major N-S trending structural corridor believed to control mineralisation at Antimony Canyon
- Satellite imagery commissioned by Red Mountain has also identified multiple similar spectral signatures to the ACP mineralisation within Red Mountain's project area, which will be followed up by ground exploration team
- Red Mountain plans to use geophysics to map out the location of prospective structures and conductive targets beneath cover for on ground follow up work, including drill testing

Red Mountain Mining Limited (ASX: RMX, US OTCQB: RMXFF, or "the Company"), an Australian and United States based Critical Minerals exploration and development company with an established and growing portfolio of projects in Tier-1 Mining Districts, is pleased to announce highly encouraging results from its exploration program at the Utah Antimony Project in the Antimony Mining district, Utah, USA. Red Mountain has also identified and acquired a further 19 prospective claims, bringing the total for the project to 106 claims.



¹ TMG ASX Announcement 14/07/2025: <https://wcsecure.weblink.com.au/clients/triggminerals/headline.aspx?headlineid=61272898>

Field Program Confirms Highly Prospective Geology and Alterations


Red Mountain's US field team recently completed mapping of both existing claim blocks of the Company's Utah Antimony Project.

Mapping in the northern claim block confirmed the presence of similar host rocks as the principal host units for mineralisation at Antimony Canyon (Figure 1A). RMX's field team also observed alteration consistent with the presence of significant epithermal system within the claims, including widespread pervasive argillic alteration (Figure 1C) and silicification, and more localised development of oxidised breccias (Figure 1B) and quartz vein stockworks. Alteration zones are structurally controlled by northwest trending faults, which are interpreted to represent similar Fault splays to the structures that fundamentally control hydrothermal fluid flow and high-grade antimony mineralisation at Antimony Canyon.

Figure 1: Field samples and exposures from Red Mountain's northern claims area. **(A)** Fine-grained welded tuff with eutaxitic texture and silica bleaching, similar to the principal host to mineralisation at Antimony Canyon (Sample location 732361). **(B)** Coarse angular breccia cemented by silica and iron oxides. Strong hematite-jarosite color and possible replacement textures consistent with hydrothermal brecciation along a feeder fault (Sample location 732355). **(C)** Exposure of strongly oxidised tuffaceous breccia with hematite and yellow-white clay alteration (kaolinite/dickite) interpreted to indicate upper-level steam-heated alteration in the near surface portion of a hydrothermal system (Exposure location 732357). For sample and exposure locations, see Figure 5. Summary of the host rocks are found in Table A below.

Red Mountain's southern claims area sits higher within the Tertiary volcanic sequence than the northern claims area, with exposures of pre-Quaternary geology comprising the late Tertiary volcanic and sedimentary units that overlie the basal volcaniclastic and fluvial sediments of the Flagstaff Formation (Figure 2). However, it is considered likely that The Flagstaff Formation, including the tuffaceous volcaniclastic units that host antimony mineralisation at Antimony Canyon, extend into the Company's southern claims at relatively shallow depths. Where Tertiary volcanic basement is exposed in the southern claims area, it typically occurs as steep, fault-controlled exposures of volcanic breccias and welded tuffs showing pervasive silification and patchy iron-oxide alteration (Figure 4A), and local zones of strong fault-controlled quartz veining (Figure 4B), which is consistent with the upper portion of an epithermal system, suggesting excellent potential for concealed antimony mineralisation at depth.

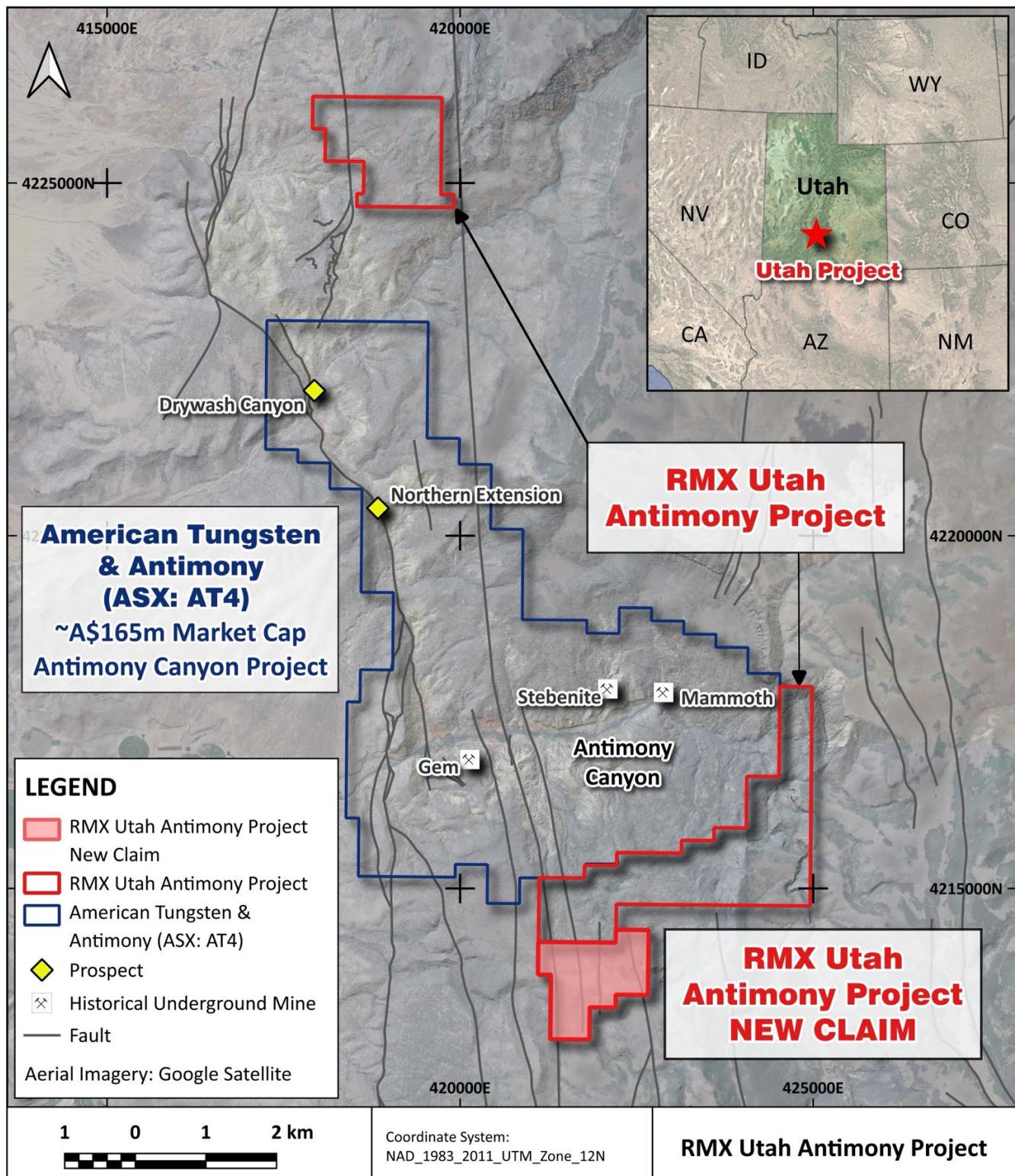
Figure 2: Field samples and exposures from Red Mountain's northern claims area. **(A)** Exposure of vuggy, porous silica with cream-white quartz and red-brown iron oxide staining, featuring strong silification and leaching with open vugs lined by secondary silica. The exposure is interpreted to represent a silica cap developed above a deeper hydrothermal feeder, that is typical of a high-sulfidation epithermal system that may host antimony mineralisation at depth (Exposure location 732370). **(B)** Strongly banded and brecciated intensely silicified rock featuring vein quartz and well developed iron oxide coatings (hematite/goethite) along fractures and within cavities. Interpreted to represent a fault-controlled hydrothermal vein feeder cutting through the volcanic pile (Sample location 732371). For sample and exposure locations, see Figure 6. Summary of the host rocks are found in Table A below.

The Antimony Mining District was discovered in 1879 and produced high-grade Sb ores from multiple small-scale mines from 1880 to about 1908 and intermittently into the 1960s². RMX's claims lie immediately along strike to the north and south of American Tungsten and Antimony Ltd's (**ASX: AT4**; **Market cap AU\$152 million** – formerly Trigg Minerals (**ASX: TMG**)) Antimony Canyon Project (Figure 1), which includes more than 30 historical mine workings surrounding both Antimony Canyon and Drywash Canyon, approximately 6km north of the main prospect.

Antimony mineralisation within the Antimony Mining District is related to approximately north-south trending fault system, which are interpreted to be fault splays related to the Paunsaugunt Fault. These faults are thought to have provided pathways for hydrothermal fluids from nearby volcanic centres to migrate upward towards favourable stratigraphic horizons, where antimony typically occurs as stibnite veins and stockwork zones parallel to flat-lying stratigraphy. The dominant host for mineralisation at Antimony Canyon and Drywash Canyon is the Early Palaeocene Flagstaff Formation, which comprises carbonate-rich fluvial sandstone and conglomerate, with AT4's recent exploration³ concluding that a brittle tuffaceous felsic volcaniclastic horizon within the Formation is the most prospective host unit, but that mineralisation is present at multiple stratigraphic levels, implying potential for both laterally and vertically extensive mineralisation, providing an encouraging model for Red Mountain's Utah Antimony Project prospectivity.

Subsequent to Red Mountain's announcement of acquiring the Utah Antimony Project in mid-September⁴, AT4 has released modelling results from its 43-kilometre-controlled-source audio magnetotellurics (CSAMT) survey at Antimony Canyon^{5,6}, which detected a geophysical structure consistent with a large-scale epithermal mineral system, including extensive, stacked low-resistivity (conductive) zones, interpreted as argillic (clay) alteration that is a prospective host for antimony mineralisation, overlain by a high-resistivity zone, thought to represent the silica cap of the hydrothermal system. The CSAMT survey has also imaged multiple discrete, steeply dipping structural breaks that disrupt the conductive horizons. AT4 interpret these features, which correlate well to ~N-S trending Paunsaugunt Fault splays mapped by the Utah Geological Survey, to be the main "feeder

² Doelling, H.H., 1975, Geology and mineral resources of Garfield County, Utah: Utah Geological and Mineral Survey Bulletin 107, 172 p.


³ TMG ASX Announcement 14/08/2025: <https://wcsecure.weblink.com.au/clients/triggminerals/headline.aspx?headlineid=61278259>

⁴ RMX ASX Announcement 11/09/2025: <https://investorhub.redmountainmining.com.au/announcements/7151434>

⁵ TMG ASX Announcement 08/10/25: <https://wcsecure.weblink.com.au/clients/triggminerals/headline.aspx?headlineid=61288908>

⁶ TMG ASX Announcement 04/11/2025: <https://wcsecure.weblink.com.au/clients/triggminerals/headline.aspx?headlineid=61295302>

structures" responsible for transporting mineralising fluids from depth and therefore a fundamental control on the extent and location of antimony mineralisation.

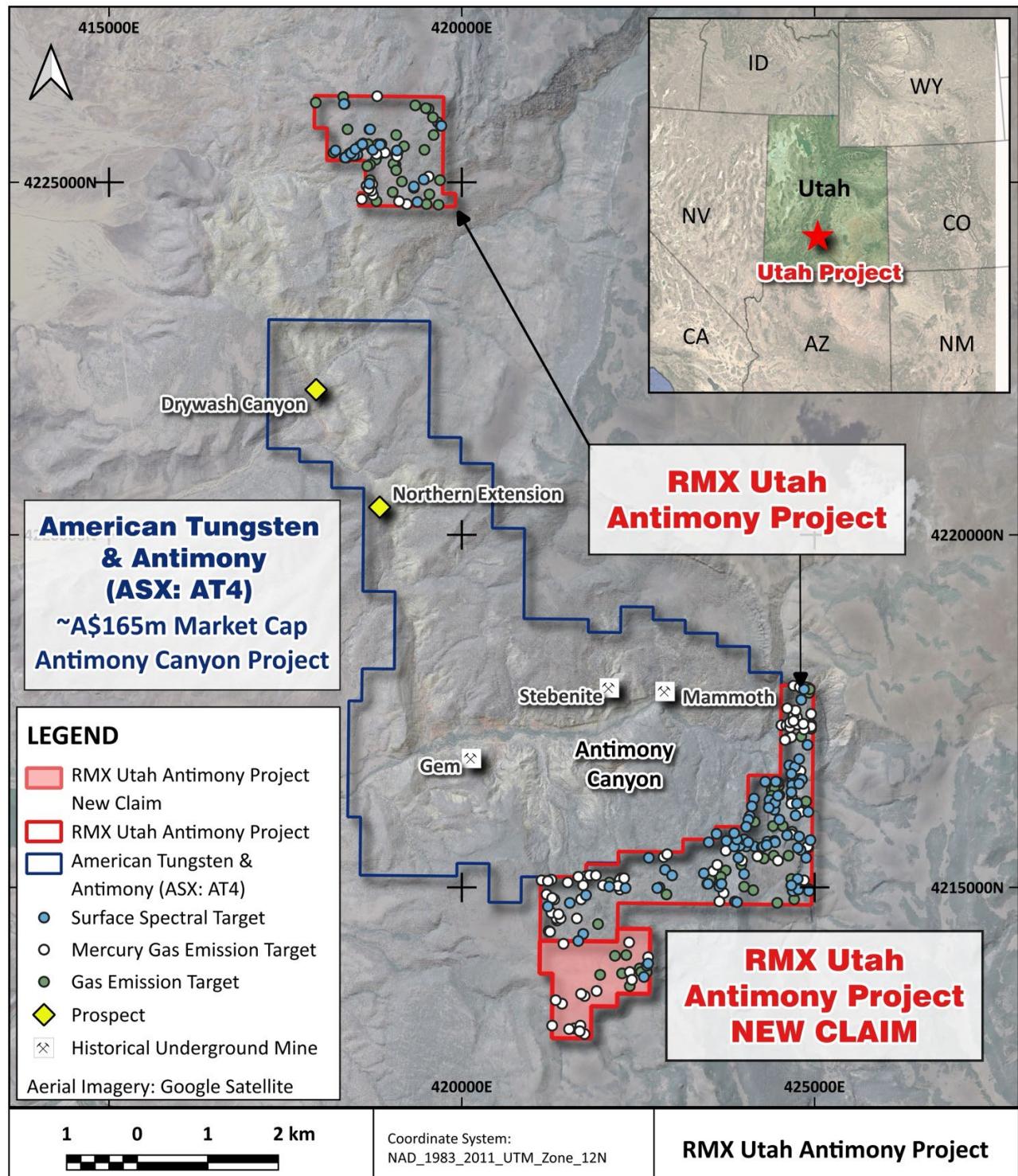
Figure 3: Location of Red Mountain's Utah Antimony Project relative to Americal Tungsten and Antimony Ltd's' Antimony Canyon Project, with the new claim area highlighted . The locations of AT4's main focus area, Antimony Canyon, and the Drywash Canyon and Northern Extension prospects, are also shown.

On 25 November, AT4 announced results of a second phase of systematic rock chip and channel sampling at Antimony Canyon⁷, with multiple samples returning >1% Sb, including best results of 29.4% Sb from Little Emma, 25.24% Sb from the Pluto Workings and 17.94% Sb from the Gem Mine zone.

Significantly for Red Mountain, AT4 also announced the discovery of a substantial new zone of high-grade antimony mineralisation, returning results of up to 3.59% Sb to date, and termed the "Northern Extension", which lies approximately 1km north of the Antimony Canyon Project area (Figure 3). The Northern Extension coincides with a coherent NNW-trending CSAMT conductive anomaly and is interpreted to be controlled by splays of the Paunsaugunt Fault, highlighting the importance of these structures in controlling mineralisation and confirming the potential for significant antimony mineralisation both north and south along strike from Antimony Canyon, including into Red Mountain's project area. The 19 new claims added to Red Mountain's Utah Antimony Project are targeted at the further southern extension of major ~N-S trending faults that are thought to be the main control on the mineralising system at Antimony Canyon and the Northern Extension (Figure 3).

Most recently, on December 10, AT4 announced "tentative" regulatory approval of a 24 hole diamond drilling program, planned to total around 1650m, targeting the Little Emma and Gem prospects within Antimony Canyon, which drilling planned to commence before the end of December.⁸

Multispectral satellite data defines multiple targets within the Utah Antimony Project


During October, Red Mountain also engaged Dirt Exploration ("Dirt") to process and analyse satellite imagery across AT4's project area and Red Mountain's Utah Antimony Project to firstly understand the spectral signal of the exposed mineralisation in Antimony Canyon and then identify the distribution of comparable spectral patterns within Red Mountain's project area.

The study used the locations and antimony content of 200 published AT4 rock chip samples to generate a multispectral fingerprint of the mineralisation in Antimony Canyon. This classifier was then mapped over Red Mountain's claims to identify potential similar targets.

⁷ TMG ASX Announcement 25/11/2025: <https://wcsecure.weblink.com.au/clients/triggminerals/headline.aspx?headlineid=61298884>

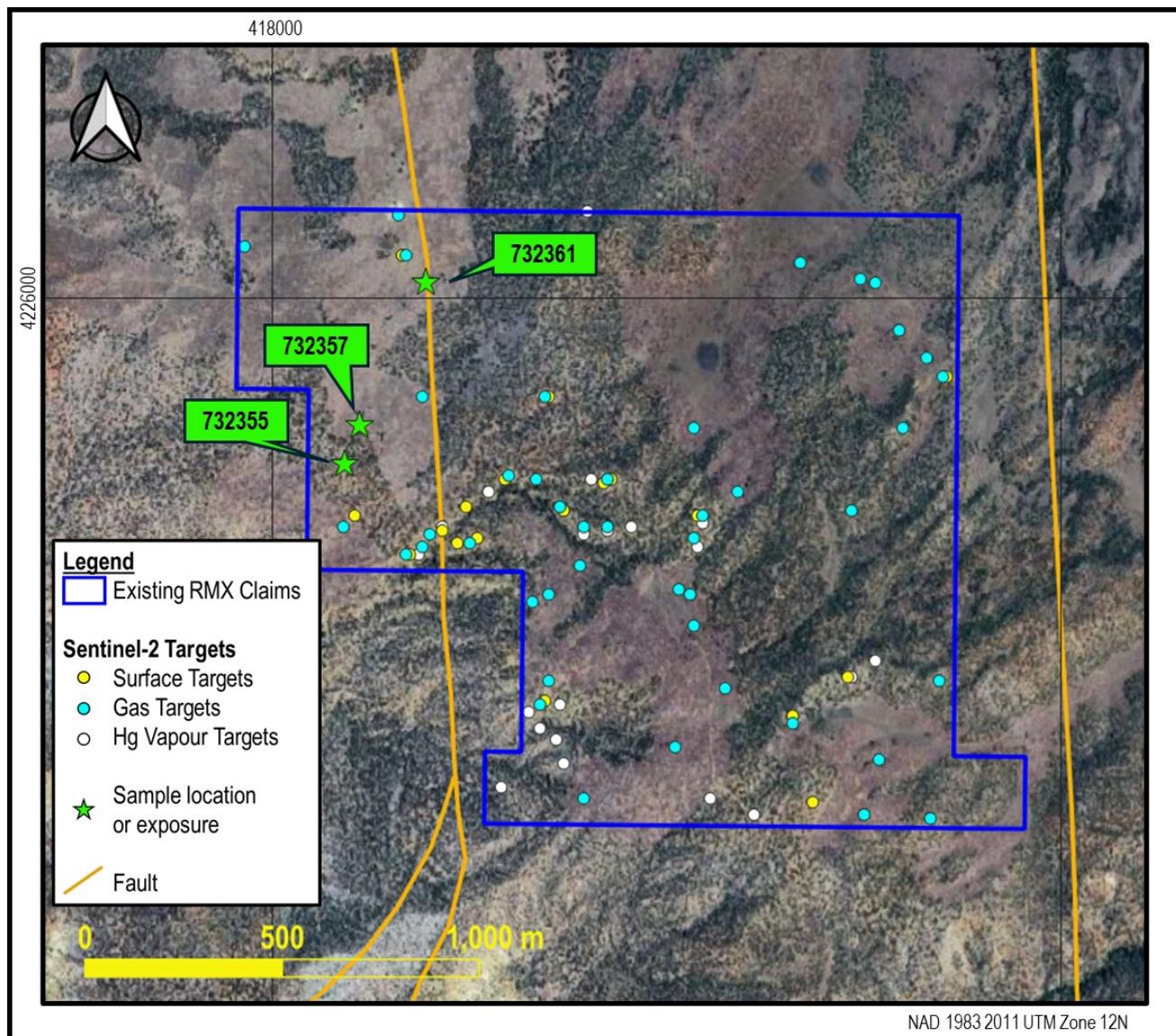
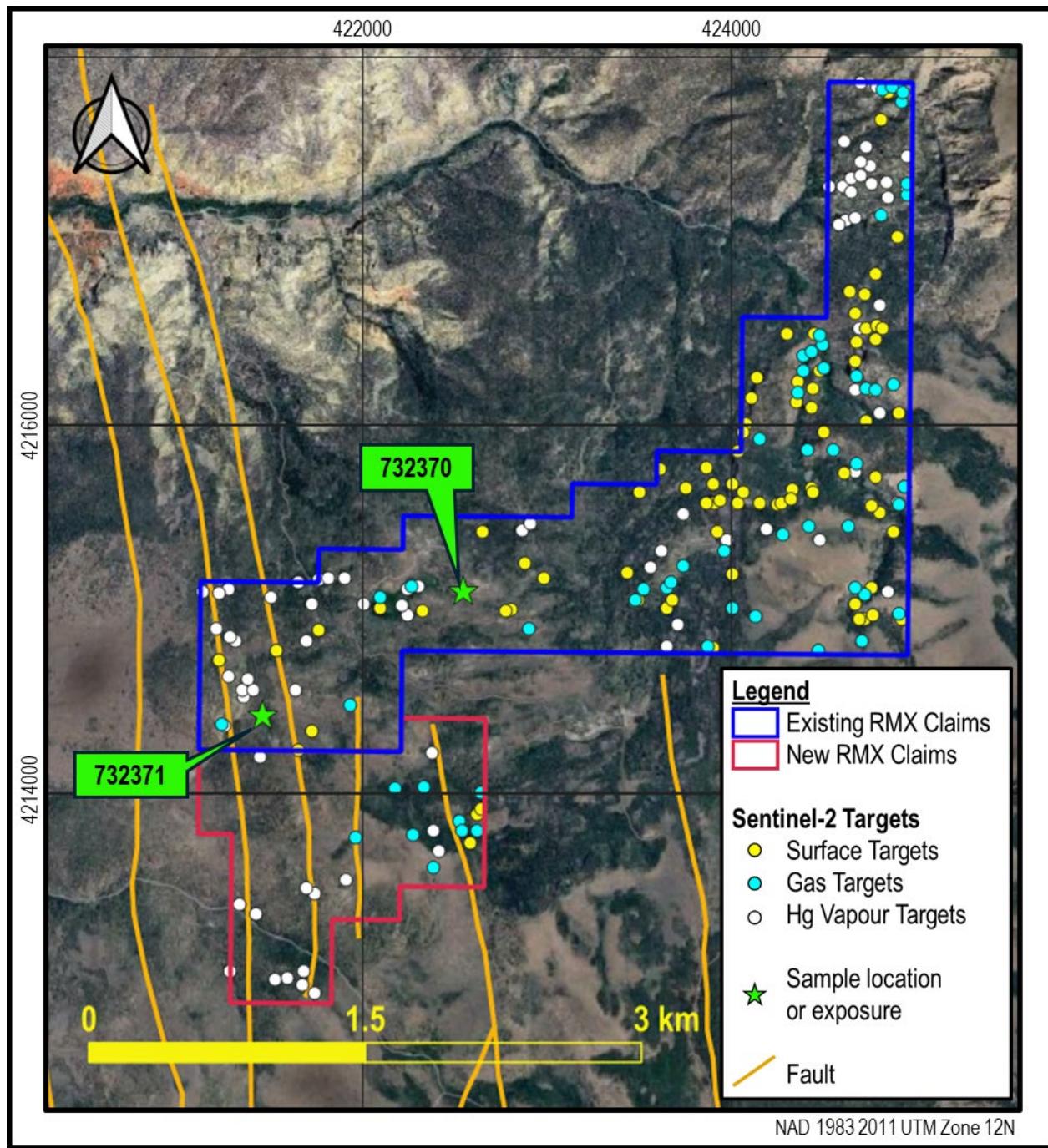

⁸ TMG ASX Announcement 10/12/2025: <https://wcsecure.weblink.com.au/clients/triggminerals/headline.aspx?headlineid=61302497>

Figure 4: Location of Red Mountain's Utah Antimony Project relative to American Tungsten and Antimony Ltd's' Antimony Canyon Project and the spectral targets, with the new claim area highlighted. The locations of AT4's main focus area, Antimony Canyon, and the Drywash Canyon and Northern Extension prospects, are also shown.


As the classifier was based on surface spectral responses, it effectively acts as a detection tool for potential outcropping mineralisation. The 100 strongest matches to the classifier within the Red Mountain claims, including the newly pegged areas, are shown as "Surface Targets" on Figures 5 and 6. These targets are mostly concentrated in the eastern portion of the southern claims area, where

the underlying prospective Tertiary geology is not masked by Quaternary sediments (Refer to Figure 4).

Figure 5: Locations of Sentinel-2 spectral targets and samples and exposures shown in Figure 3 for the northern claims area of Red Mountain's Utah Antimony Project. Tertiary faults mapped by the Utah Geological Survey are also shown.

Satellite imagery can be utilised to look under cover and through vegetation by mapping spectral features associated with gases that may diffuse to the surface from shallowly to deeply buried sources. By using the AT4 rock chip sampling as a training dataset, Dirt was able to demonstrate a correlation between antimony mineralisation and elevated signals for mercury (Hg) vapour, and hydrogen (H₂), methane (CH₄), carbon dioxide (CO₂) and radon (Rn) gas. Using this relationship, Dirt was able to map the 100 strongest "Gas Targets" across Red Mountain's claims, which are also shown on Figures 5 and 6. These targets show a much more uniform distribution across the Utah Antimony Project, reflecting the potential for this targeting technique to "see" through cover.

Figure 6 Locations of Sentinel-2 spectral targets and samples and exposures shown in Figure 4 for the southern claims area, including the new claims area of Red Mountain's Utah Antimony Project. Tertiary faults mapped by the Utah Geological Survey are also shown.

The final targeting product provided by Dirt is mercury vapour. Mercury is typically present in high concentrations in high sulfidation epithermal mineralisation and, as noted above, the mineralisation at Antimony Canyon correlates with spectral signals indicating high concentrations of mercury vapour. The element is highly volatile and mobile, and is known to migrate upward in vapour form from buried mineralisation. Mercury vapour anomalies in soil gas have successfully detected buried deposits at depths of up to 600m.

Using multiple spectral features for mercury vapour that are detectable in Sentinel-2 data, Dirt mapped the 100 strongest "Hg Vapour Targets" across Red Mountain's claims, which are also shown in Figures 5 and 6. Like the Gas Targets, the Hg Vapour Targets are present in both outcropping and covered areas across the Company's claims, although in areas of Quarternary cover, for example in the western portion of the southern claim area and within the new claim area, they appear to be preferentially developed along and close to mapped faults (Figure 6). This relationship is consistent with the interpreted fundamental structural control on antimony mineralisation in the district.

Forward exploration program for the Utah Antimony Project

Red Mountain's priority for exploration will be to undertake additional surface mapping to follow up the highest priority surface exploration targets identified from the satellite data and identify, characterise and sample any relevant outcropping structures and lithologies. RMX is currently planning high resolution drone magnetics to locate the undercover extensions of north-south structures known to be associated with mineralisation at Antimony Canyon, Northern Extension and Drywash Canyon into RMX's claims.

The exploration will be used to define prospective areas for more intensive follow up work. The magnetic survey is being planned to model the extent of subsurface hydrothermal systems and to directly detect sulfide mineralisation beneath cover and at depth. This will be followed by RAB drilling to test shallow targets and RC and/or diamond drilling for deeper target testing.

Red Mountain set to continue aggressive US growth strategy

Red Mountain is set to continue to seek further opportunities to expand its portfolio of high-quality Critical and Strategic Metals projects in Tier 1 US mining jurisdictions. In addition to the Utah Antimony Project, the Company also holds two high-quality antimony projects in central Idaho at Yellow Pine and Silver Dollar, and is actively pursuing other opportunities with a goal of building a portfolio of assets to leverage what is an unprecedented critical shortage of Western supply and US Government interest in key strategic commodities. The Company expects to announce further growth initiatives in the coming weeks.

Authorised for and on behalf of the Board,

Mauro Piccini

Company Secretary

About Red Mountain Mining

Red Mountain Mining Ltd (ASX: **RMX**, US CODE: **RMXFF**) is a Critical Minerals and Gold exploration and development company focussed on accelerating its United States and Australia based assets, located in Tier-1 Mining Districts.

Red Mountain is fast-tracking its Critical Minerals projects in the US and Australia, and the Board and Management is determined to rapidly define a portfolio of advanced projects to assist the United States and Western countries with a reliable, high-quality source of commodity supply, including from the Company's: **Armidale Antimony-Gold Project** located in NSW, Australia, which has delivered High-Grade Antimony samples to date (up to 39.3% Sb) and its **US Critical Minerals Portfolio**: the **Utah Antimony Project** in the Antimony Mining District of Utah, adjacent to American Tungsten and Antimony Ltd's Antimony Canyon Project (ASX: AT4); the **Yellow Pine Antimony Project**, with historic workings, less than 2km from Perpetua's Stibnite Project (NASDAQ: PPTA) in Idaho; the **Silver Dollar Antimony Project** (Historic Antimony Mine), south of Yellow Pine, reporting up to 17.7% Sb; and US Lithium Projects in Nevada.

Competent Person Statement

The information in this announcement that relates to Exploration Results and other technical information complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). It has been compiled and assessed under the supervision of contract geologist Mark Mitchell. Mr Mitchell is a Member of the Australasian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Mitchell consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Disclaimer

In relying on the above mentioned ASX announcement and pursuant to ASX Listing Rule 5.23.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above-mentioned announcement.

JOIN THE RED MOUNTAIN MINING INVESTOR HUB FOR RMX AND RMXFF

Visit <https://investorhub.redmountainmining.com.au> for access to the Investor Hub

Sample Number	NAD 1983 2011 UTM Zone 12N		Description
	mE	mN	
732355	418183	4225578	Coarse angular breccia cemented by silica and iron oxides. Strong hematite-jarosite colour and possible replacement textures consistent with hydrothermal brecciation along a feeder fault
732361	418390	4226040	Fine-grained welded tuff with eutaxitic texture and silica bleaching, similar to the principal host to mineralisation at Antimony Canyon.
732371	421452	4214421	Strongly banded and brecciated intensely silicified rock featuring vein quartz and well developed iron oxide coatings (hematite/goethite) along fractures and within cavities.

Table A: Surface sampling program designed to identify surface host rocks as the geological model at the Utah Antimony Project suggests a hydrothermal model beneath the cover. As expected with this program, no outcropping Stibnite was identified.

JORC Code, 2012 Edition - Table 1

1.1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual</i> 	<ul style="list-style-type: none"> RMX has conducted grab rock chip sampling at specific altered horizons in the Flagstaff Formation during an initial geological site inspection. The samples were targeted based on hydrothermal alteration and are therefore biased. This is a first pass look and see program and not a systematic sampling programme. Sentinel 2 satellite data was acquired and unmixed to target specific mineral groups across the area. This includes serpentine, 9jarosite, magnetite, chert, pyroxene, pyrite, illite, muscovite, quartz, beryl, anthophyllite, stibnite and galena. Vegetation was also detected to see what areas are masked or swamped by vegetation. The spectra from gases He, H2, CO2, CH4 and Rn were also examined

Criteria	JORC Code explanation	Commentary
	<i>commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i>	
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> No drilling reported
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> No drilling reported.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> No drilling reported. Rock sampling is not used for resource estimation in this announcement.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample</i> 	<ul style="list-style-type: none"> Rock chip sampling was biased towards the presence of hydrothermal activity, which is the precursor to Antimony mineralisation beneath the surface. The sampling technique was seeking to identify surface rocks and the similarities

Criteria	JORC Code explanation	Commentary
	<p><i>preparation technique.</i></p> <ul style="list-style-type: none"> • <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> • <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> • <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<p>between AT4's surface rocks. AT4's geological model is undercover and driven by hydrothermal activity.</p> <ul style="list-style-type: none"> • The significance of the rock types is that there is evidence of hydrothermal activity which supports Red Mountain's geological model for the Utah Antimony Project.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> • <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> • <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> • <i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> • The spectra data was combination of VNIR and SWIR data from the Sentinel 2 satellites of the European Space Agency with VNIR at 10m spatial resolution and 2 bands of SWIR at 20m resolution. The surface reflectance's were unmixed into 16 endmembers and correlated against a library of 481 minerals provided by the USGS. The process was conducted and interpreted by Neil Pendock of Dirt Exploration (Cape town RSA). • Samples not sent for lab analysis as the successful analysis and visible interpretation of the surface host rocks has already been made to better understand the surface geology.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> • <i>The verification of significant intersections by either independent or alternative company personnel.</i> • <i>The use of twinned holes.</i> • <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)</i> 	<ul style="list-style-type: none"> • No drill holes reported.

Criteria	JORC Code explanation	Commentary
	<p><i>protocols.</i></p> <ul style="list-style-type: none"> • <i>Discuss any adjustment to assay data.</i> 	
<i>Location of data points</i>	<ul style="list-style-type: none"> • <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> • <i>Specification of the grid system used.</i> • <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> • No mineral resource estimation is presented in this release. • The satellite data geo-rectified and ground truthed
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> • <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> • Rock sample spacing was biased towards evidence of hydrothermal activity a necessary precursor for Sb mineralisation to be present. • No analytical data has been reported in the RMX licences. • The resolution of the satellite data is considered appropriate with pixel size sufficient to detect broad mineralisation patterns.
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> • <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> • <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> • Rock grab samples were biased to known brittle layers in the Flagstaff formation which are known to be exploited by hydrothermal fluids of which Red Mountain will need to continue to undertake further work to identify antimony mineralisation beneath the cover. • No drilling conducted. • The satellite reflectance data is considered Omni directional, so orientation flight paths are not a significant factor in data collection.
<i>Sample security</i>	<ul style="list-style-type: none"> • <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> • It is not reported what sample security was observed.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> The satellite data was not considered corrupted due to being ground truthed.
<i>Audits or reviews</i>	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> No audit or reviews were conducted.

1.2 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The mining claims cover two blocks, 57 claims in the north and 59 in the southeast of the two antimony canyons (Antimony and Dry Wash). The 19 recent claims adjoin exists southeast claims. The total of 106 claims covering 8.9km² are wholly owned by RMX The unpatented claims have been approved by the Bureau of Land Management.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> No reported exploration done in the RMX claims areas, only in the intervening areas of Dry Wash and Antimony Canyons.
<i>Geology</i>	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The area is defined by middle Miocene to Pliocene dacitic to andesitic eruptive centres. The volcanics are associated with hydrothermal fluids rich in multiple metals including Sb and the ore is precipitated along late Tertiary to Quaternary basin faults, the conduits for the fluids. The known Sb deposits occur as irregular lenses, rosettes, and veinlets hosted mainly in two "limey" sandstones units of the Flagstaff Formation near the contact of the overlying Oligocene and Miocene Bullion Canyon Volcanics (Doelling, 1975).

Criteria	JORC Code explanation	Commentary
		The ore zones are reported to typically range from 1.5 to 6m thick with the primary ore mineral being stibnite associated with gangue minerals which include pyrite, realgar, orpiment, fluorite, quartz, kaolinite, and arsenopyrite.
<i>Drill hole Information</i>	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> No drilling conducted
<i>Data aggregation methods</i>	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should</i> 	<ul style="list-style-type: none"> No aggregated methods are reported

Criteria	JORC Code explanation	Commentary
	<p><i>be shown in detail.</i></p> <ul style="list-style-type: none"> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	
<i>Relationship between mineralisation widths and intercept lengths</i>	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> No relationship is made between mineralisation width and intercept lengths
<i>Diagrams</i>	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Appropriate location diagram is presented in the text. The diagram is indicative only as no assumptions of grade, extent or depth are made.
<i>Balanced reporting</i>	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> Only pertinent results are given as due to the relevance of the announcement.
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> There is no other substantive exploration data provided or withheld as this announcement deals with this early phase exploration target.

Criteria	JORC Code explanation	Commentary
<i>Further work</i>	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> The forward work program includes detailed mapping to identify the prospective horizons in the Flagstaff formation for sampling and may be subject to geophysical surveying based on suitable petrophysical contrasts between horizons. Targets generated will be rated and those most prospective may be drilled. Diagrams of the sampling positions have been provided in the text.