

HIGH-GRADE ANTIMONY RESULTS AT ARMIDALE CONFIRM POTENTIAL FOR A MAJOR ANTIMONY-GOLD SYSTEM

HIGHLIGHTS

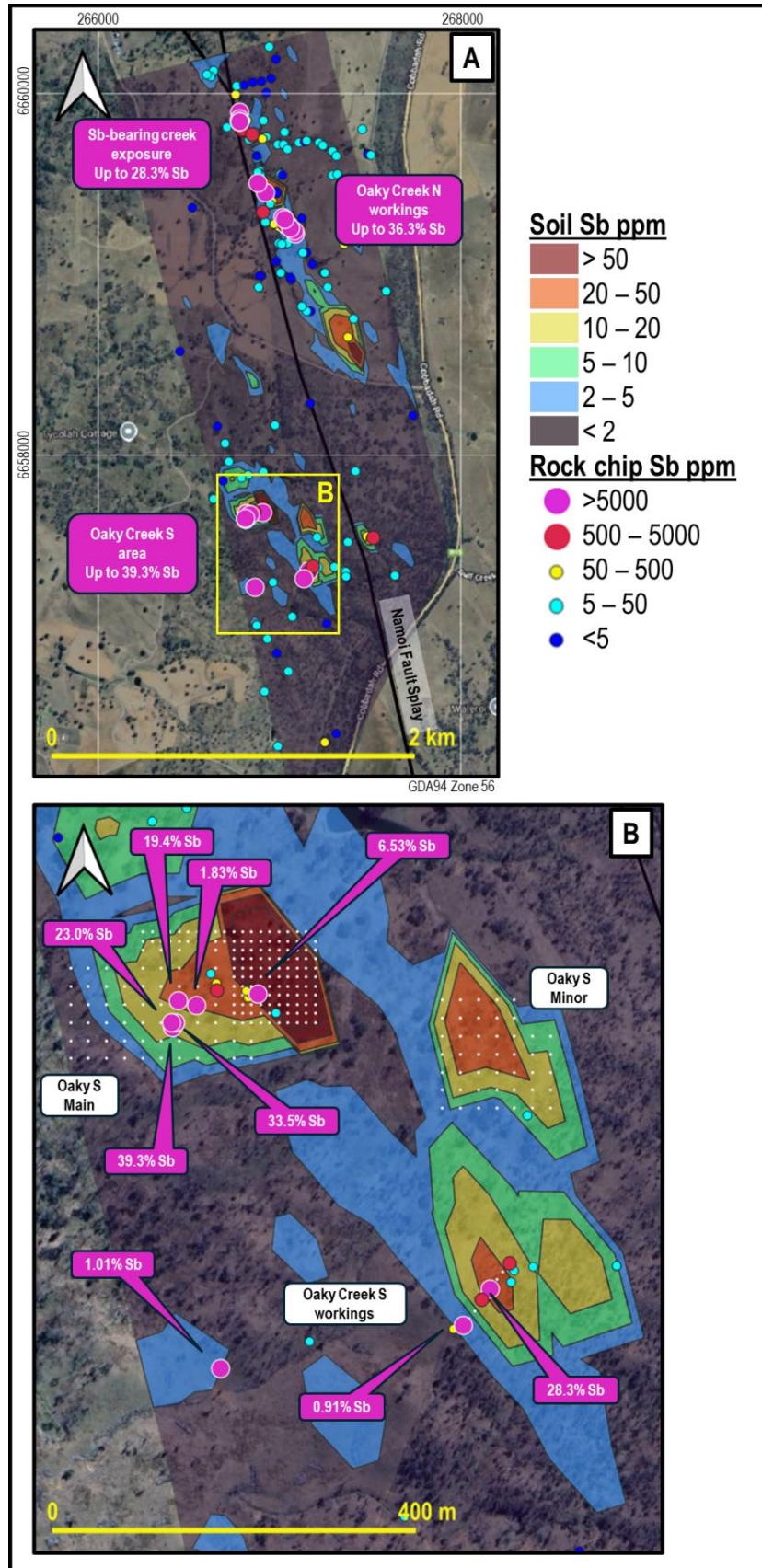
- Targeted soil sampling program at Oaky Creek South returns a series of high-grade assays with a peak value of 1,200 ppm Antimony, with 13 samples exceeding 100ppm Antimony across the whole program
- A significant auger soil result of 1.36% Sb, over 10x the next highest recorded value was also recorded at Oaky Creek South workings, the sample returned the highest gold value of 14ppb.
- A coherent 200m long northeast-striking Sb-As anomaly has been identified which remains open to the northeast (Figure 4)
- A second grid, 300m north of the Oaky Creek South workings returned strong anomalous arsenic, a path-finder for gold, with a maximum value of 259ppm As, which remains open to the northwest towards the Main Grid, to the southwest, and south towards the historical Antimony workings
- Red Mountain has now received all assay results from the Oaky Creek South sampling campaign. The highly encouraging soils results, alongside the previously reported high-grade Antimony rock mineralisation of up to 39.3% Sb, has prompted immediate planning for the field team to launch an exploration program in December to define specific drill targets:
 - RMX will expand the grid at Oaky Creek South to cover the area between the historical workings and the Main Grid, testing the NE extension of the exceptionally high anomaly
 - A strong 1km-long Antimony soil anomaly extending SSE from Oaky Creek North will also be tested by auger sampling, prior to expected drilling
 - Soil sampling results received at East Hills will also be further explored as the results define NNW-trending soil Antimony anomalies, with a peak value of 104ppm Sb
- Both the strike extent and strong spatial correlation between Antimony and Gold at Oaky Creek supports Red Mountain's exploration model for the prospect of a major vein-style orogenic Antimony-Gold system, which is directly analogous to Larotto's (ASX: LRV) Hillgrove Project, east to Red Mountain's project and subject to a recent takeover attempt from United States Antimony Corporation (NYSE: UAMY)

Red Mountain Mining Limited (ASX: RMX, US OTCQB: RMXFF, or "the Company"), a Critical Minerals exploration and development company with an established and growing portfolio in Tier-1 Mining Districts in the United States and Australia, is pleased to announce exceptional high-grade Antimony results for soil sampling completed in September at the Oaky Creek prospect, and soil sampling completed at East Hills at the Company's 100% owned Armidale Antimony-Gold Project in the New England Orogen of New South Wales. The recent soil sampling program returned 13 samples exceeding 100ppm Antimony in the assays, with a peak value of 1,200 ppm Antimony.

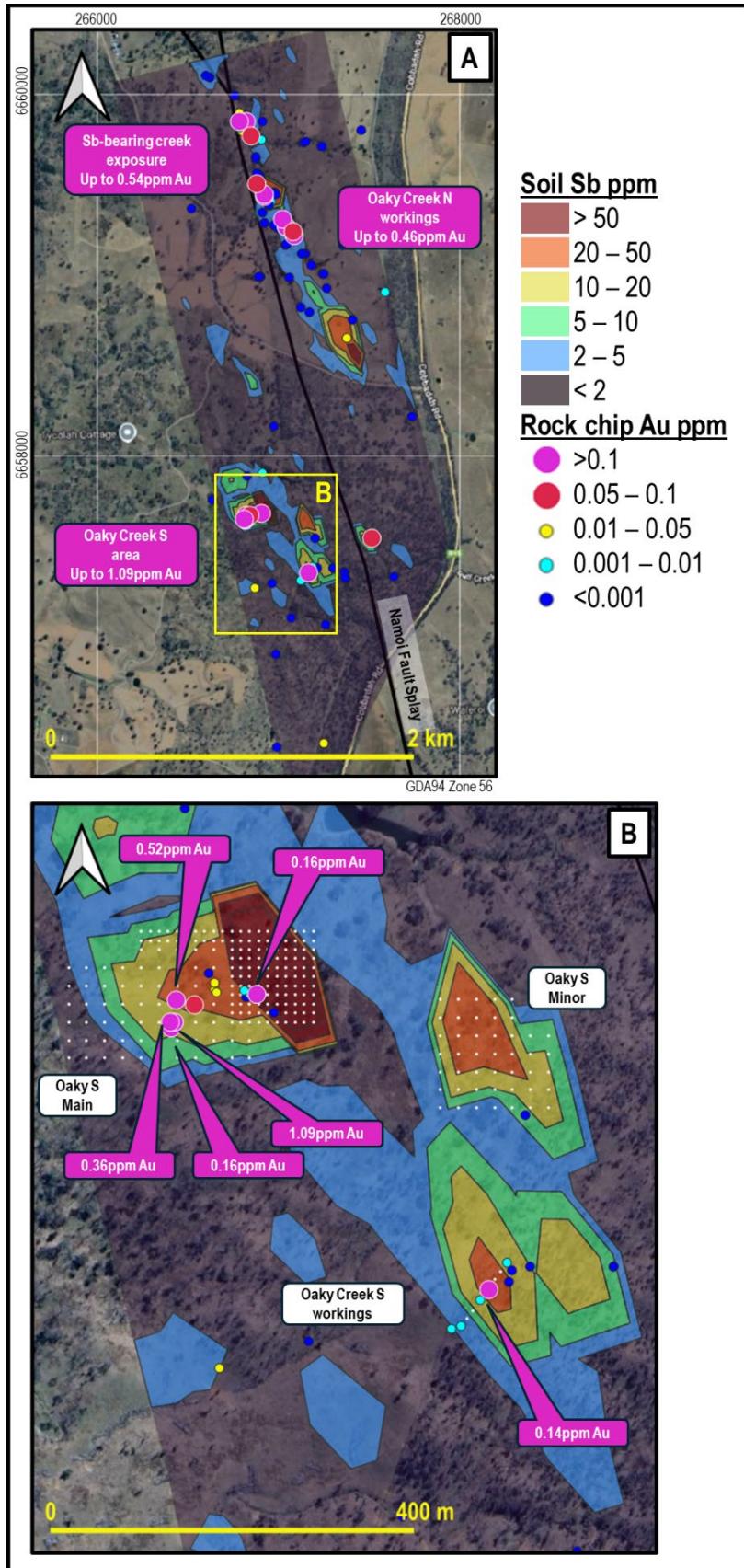
Soil antimony values surpassing the 100ppm threshold are considered highly anomalous. The results support the interpretation that a significant Antimony-Gold mineralisation may be present. Red Mountain is planning to undertake an immediate follow-up exploration program in December to generate potential drill targets.

Oaky Creek and East Hills are two of several known orogenic gold and antimony mineral occurrences within the Armidale project, which have strong structural, lithological and mineralogical similarities to Larvotto's (ASX: LRV) Hillgrove deposit to the East, which is Australia's largest antimony-gold deposit.

Auger results reveal an extensive orogenic Antimony system at Oaky Creek South


Red Mountain's field team collected a total of approximately 250 auger soil samples at Oaky Creek South: "Oaky S Main" (193 sample sites) and "Oaky S Minor" (45 sample sites); as well as a single line of eight samples collected across the Oaky Creek South workings (Figure 1 and Figure 2).

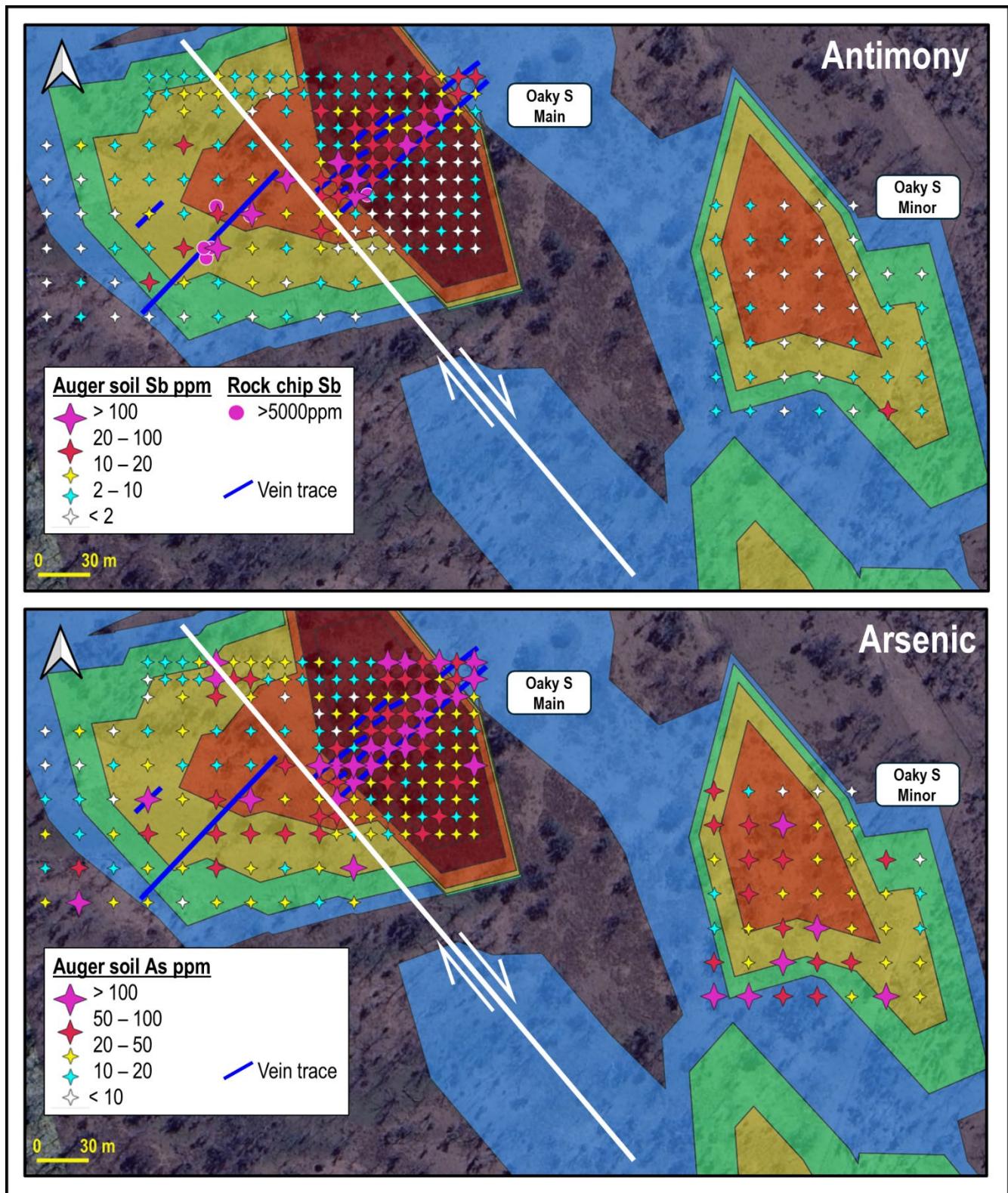
The Oaky South Main grid is located approximately 400m north-northwest of the historical pits and shafts at Oaky Creek South. The grid is targeted on a conventional soil sample anomaly with a peak value of **333ppm Sb**¹. The Oaky S Minor grid is centred ~200m southeast of the Oaky S Main Grid, targeting a soil sample located 300m north of the Oaky Creek South workings that contained **46ppm Sb** and **65ppm As**¹. In October, Red Mountain reported², float and in-situ rock chip samples from Oaky Creek South have returned multiple high grade results, with maximum values of **39.3% Sb** and **1.09g/t Au** from the Oaky South Main grid area (Figure 1 and Figure 2), while samples collected close to the historical workings have best analyses of **28.3% Sb** (Figure 1) and **0.14g/t Au** (Figure 2).



¹RMX ASX Announcement 7 June 2025. <https://investorhub.redmountainmining.com.au/announcements/6998482>

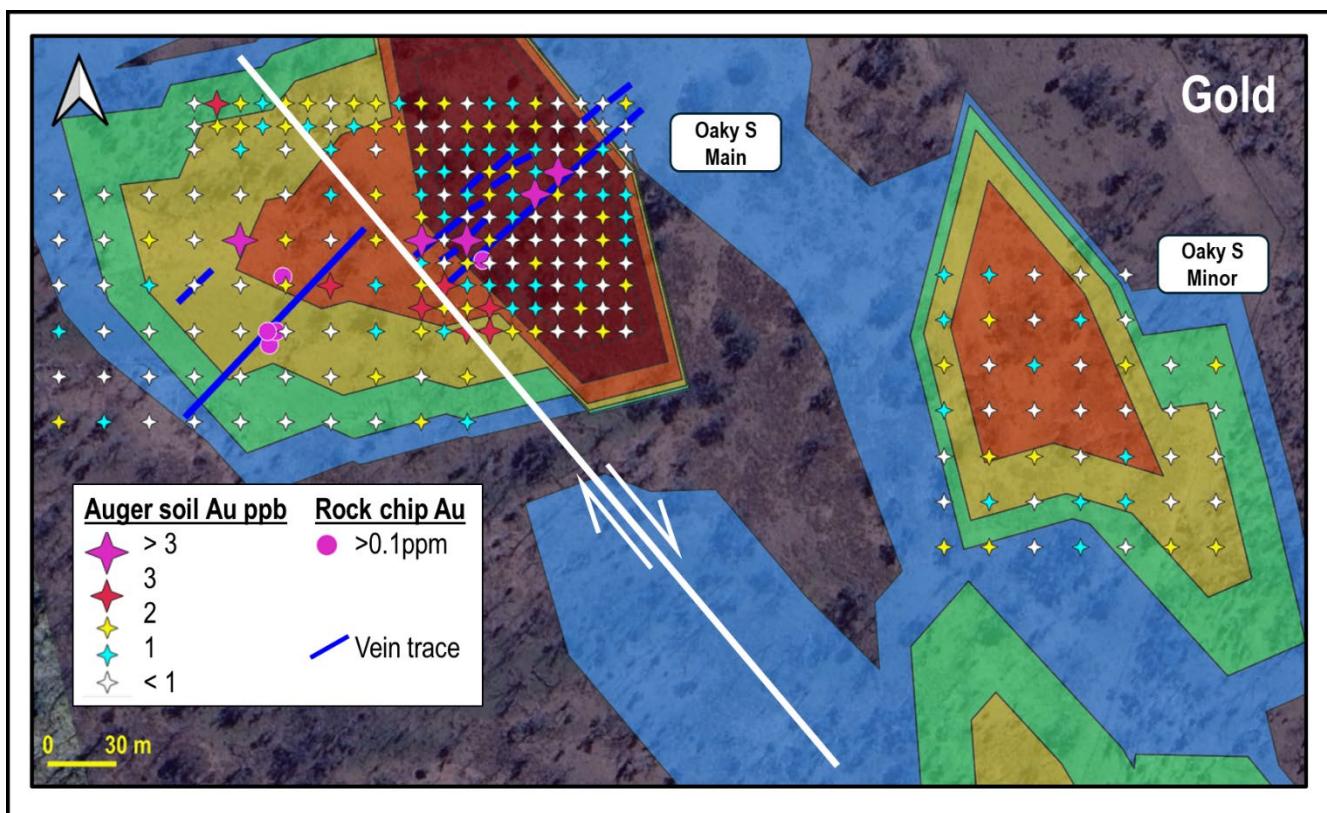
²RMX ASX Announcement 2 October 2025. <https://investorhub.redmountainmining.com.au/announcements/7181513>

Figure 1: Antimony rock chip analyses for the Oaky Creek prospect overlain on antimony soil results. **(A)** Overview of the Oaky Creek prospect. **(B)** Detail over the Oaky Creek South area highlighting >0.5% Sb rock chip samples and showing the locations of the hand auger soil sampling sites (white dots).


Figure 2: Gold rock chip analyses for the Oaky Creek prospect overlain on antimony soil results. **(A)** Overview of the Oaky Creek prospect. **(B)** Detail over the Oaky Creek South area highlighting >0.1 ppm Au rock chip samples and showing the locations of the hand auger soil sampling sites (white dots).

Sampling at Oaky Creek South targeted the C soil horizon and samples were collected from as deep as possible at each site. Sampling depths ranged from 10cm to 100cm (Appendix 1), with the majority of samples collected at depths between 20 and 60cm.

Figure 3 shows antimony and arsenic results for the Oaky S Main and Oaky S Minor grid auger soil samples.


The auger samples collected from the Oaky S Main grid define a coherent >20ppm Sb northeast-trending anomaly, up to approximately 30m in width and 200m in length, which parallels and overlaps the extent of mapped quartz-carbonate-sulfide veins. The core of the anomaly is defined by nine samples containing **>100ppm Sb**, with a peak value of **1,201ppm Sb** (Figure 3; Appendix 1). The auger soil anomaly shows a close spatial relationship to previously reported highly anomalous rock chip samples. The anomaly and vein sets appear to be offset along an approximately NW-striking fault, which may represent a smaller splay structure off the NNW-striking major Namoi Fault splay that lies approximately 400m east of the grid (refer to Figure 1) and is thought to be the primary controlling structure and fluid conduit for the Oaky Creek antimony-gold system. The Oaky S Main grid hand auger antimony soil anomaly is open to the northeast, towards the Namoi Fault splay.

For the Oaky S Main grid, arsenic hand auger soil results closely mimic the pattern of antimony results to the northeast of the interpreted fault, which appears to essentially truncate the arsenic anomaly. The arsenic anomaly is well defined by 27 samples containing >100ppm As, with a maximum value of 1,040ppm (Appendix 1) and like the antimony anomaly is open to the northeast (Figure 3). In contrast to the antimony results, the Oaky S Minor grid is anomalous for arsenic, with six samples containing >100ppm As, with a maximum value of 257ppm (Appendix 1). The samples with anomalous and elevated (>50ppm As) arsenic have no clear structural control and are clustered around the northwest and southern edges of the grid, meaning that the anomaly is open to the northwest towards the Main grid, to the southwest, and south towards the historical workings (Figure 3).

Figure 3: Hand auger antimony (top) and arsenic (bottom) soil results for the Oaky S Main and Oaky S Minor grids, relative to the conventional soil sample Sb anomaly shown in Figures 1 and 2. The locations of highly anomalous rock chip samples and mapped quartz±carbonate±sulfide vein traces are also shown. The fault shown in white is interpreted from the offset in the antimony and the apparent truncation of the arsenic anomaly. For grid locations, refer to Figures 1 and 2.

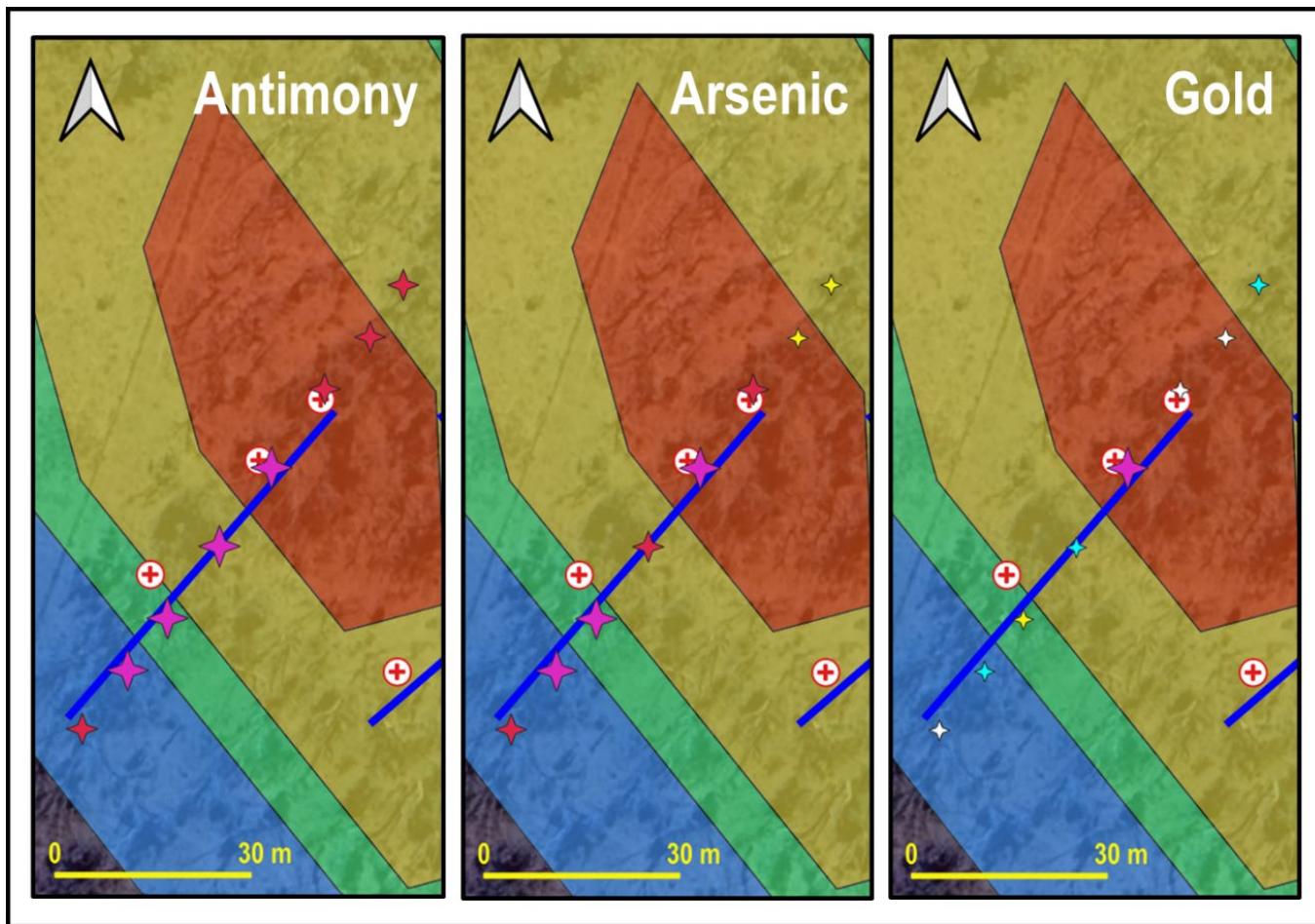
Consistent with the conventional soil results reported in June 2025³, gold results for the hand auger sampling at both the Oaky S Main grid and Oaky S Minor grid are subdued, with the majority of samples returning assays of below the detection limit of 1ppb Au and only five samples, all from the Oaky S Main grid, containing more than 3ppb Au, with a peak value of 9ppb Au (Appendix 1). The hand auger soil samples with higher gold contents generally occur within the area defined by the >20ppm Sb anomaly on the Main Grid and are spatially associated with mapped veins and previously reported anomalous rock chip samples (Figure 4), suggesting that the gold is genetically related to the antimony mineralisation and providing further evidence supporting RMX's exploration model that Oaky Creek represents a significant orogenic antimony-gold mineral system analogous to the Hillgrove Mine to the east, which is Australia's largest known antimony deposit.

Figure 4: Hand auger gold soil results for the Oaky S Main and Oaky S Minor grids, relative to the conventional soil sample Sb anomaly shown in Figures 1 and 2. The locations of highly anomalous rock chip samples and mapped quartz±carbonate±sulfide vein traces are also shown. The fault shown in white is interpreted from the offset in the antimony and the apparent truncation of the arsenic hand auger soil anomaly, shown in Figure 3. For grid location, refer to Figures 1 and 2.

The identification of a large, coherent antimony-arsenic hand auger soil anomaly in the Oaky S Main grid, with associated veining and strongly anomalous rock chip samples at a distance of approximately 400m from the nearest historical workings at Oaky Creek South indicates the potential for additional

³RMX ASX Announcement 7 June 2025. <https://investorhub.redmountainmining.com.au/announcements/6998482>

discovery of previously unrecognised orogenic antimony mineralisation at Oaky Creek. Further auger sampling is planned as soon, across the following prospective target areas:

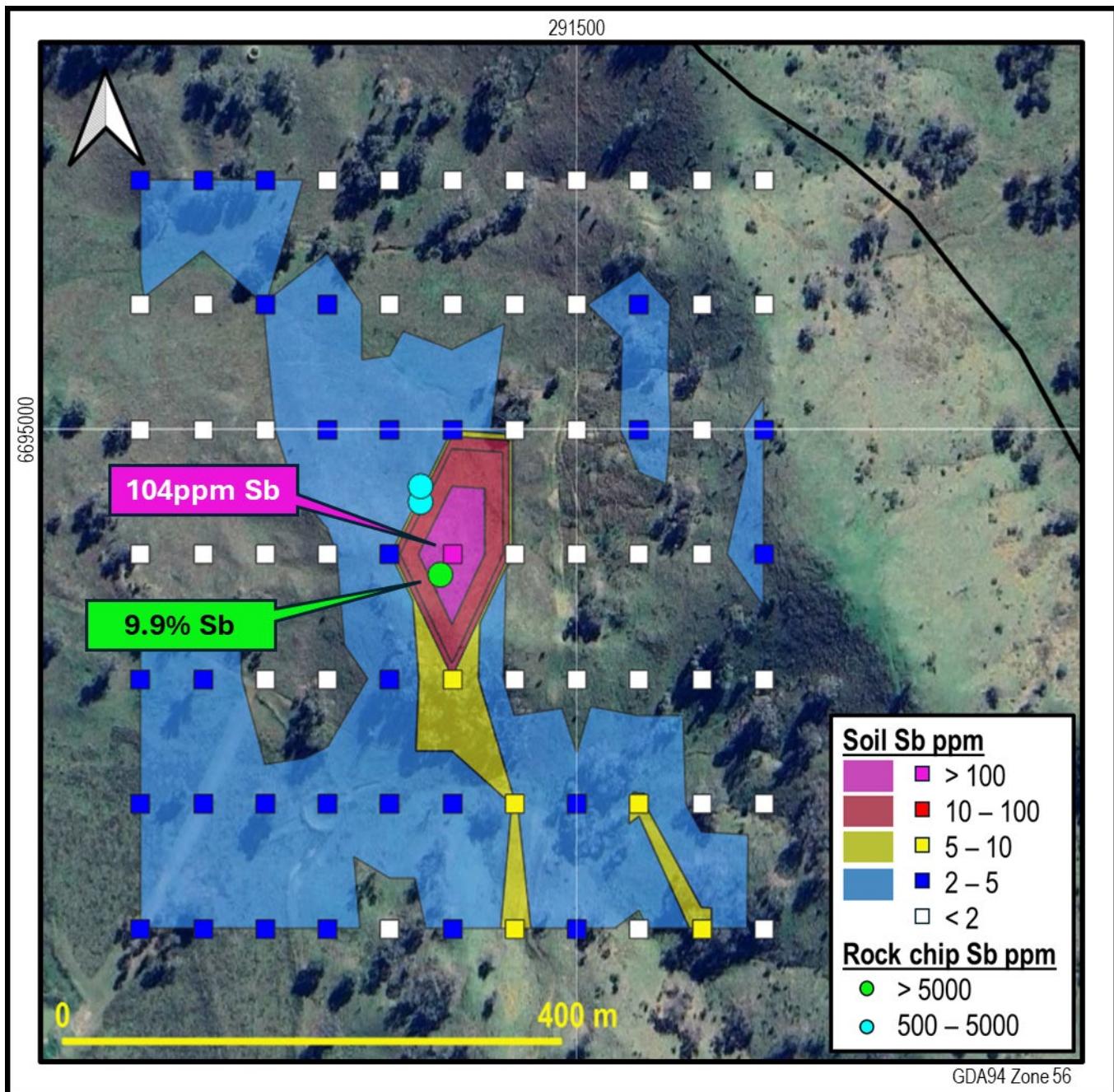

- Northeast of the Oaky S Main grid, towards the Namoi Fault.
- Across the unsampled area between the Oaky S Main grid, the Oaky S Minor grid and the Oaky S workings.
- Along the length of the 1km long soil antimony anomaly that extends south-southeast from Oaky Creek North.

Following receipt of the results of the planned December program, Red Mountain expects to be able to target the Oaky Creek prospect for drill testing.

Results across Oaky South historical workings confirm significance of Oaky S Main results

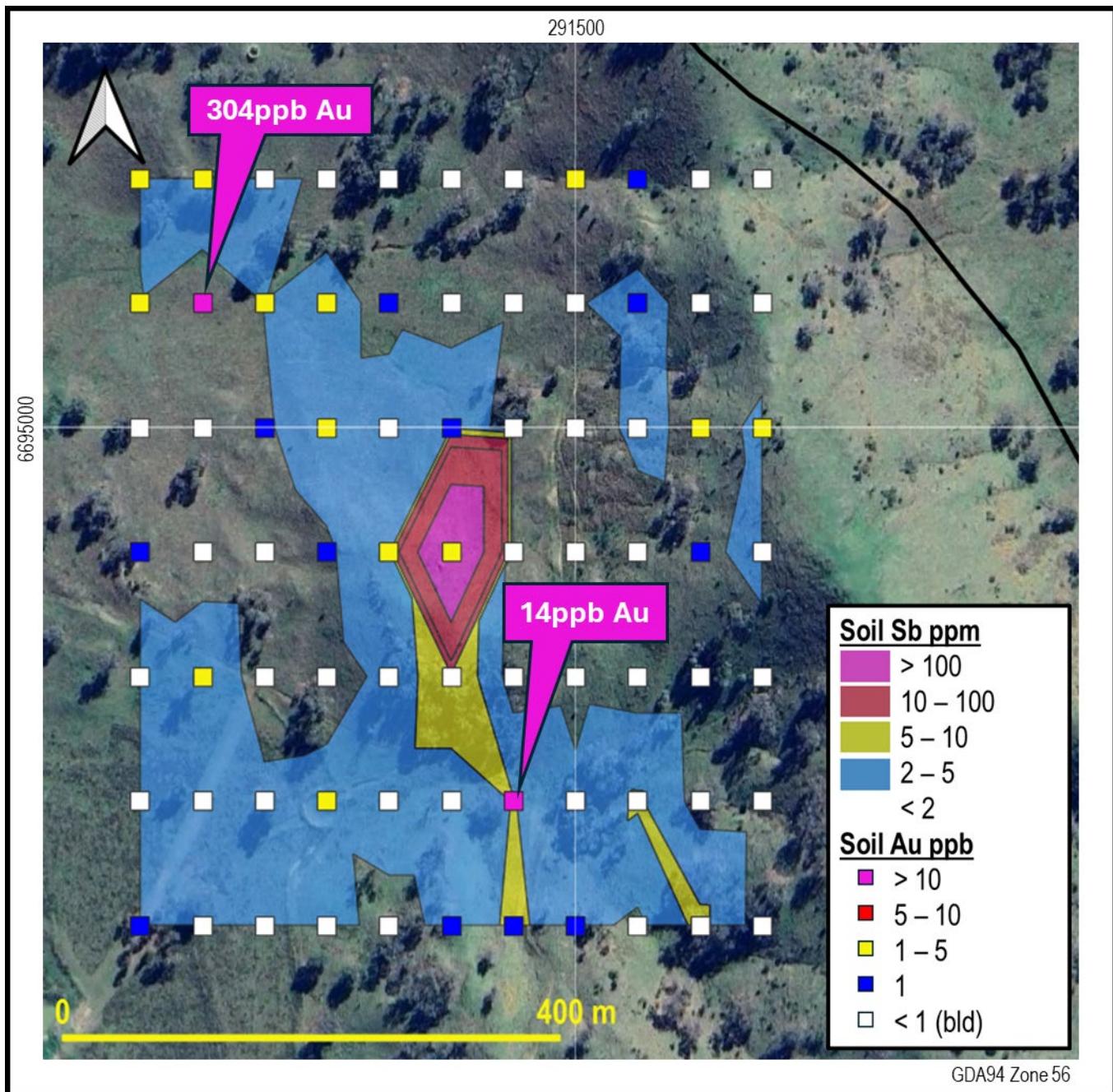
Sample (AA201), returned a significant auger soil result of **1.36% Sb**, over 10x the next highest recorded value. This sample also returned the highest gold value of **14ppb**.

To provide a guide as to the expected auger soil response over mineralisation at Oaky Creek, RMX collected a single orientation line of eight samples across the historical antimony workings at Oaky Creek South (refer to Figure 1 and Figure 2 for location). The results of this sampling for antimony, arsenic and gold are summarised in Figure 5 and listed in Appendix 1. Gold and arsenic values are consistent with the anomalous samples collected from the Oaky S Main grid, with maximum values of **14ppb Au** and **351ppm**.


Figure 5: Hand auger antimony, arsenic and gold soil results for the Oaky South historical workings, relative to the location of shafts and pits (red crosses), the conventional soil sample Sb anomaly shown in Figures 1 and 2, and mapped quartz±carbonate±sulfide vein traces. Refer to Figures 3 and 4 for the auger soil values legends. For sample line location, refer to Figures 1 and 2.

Encouraging initial soil results at East Hills

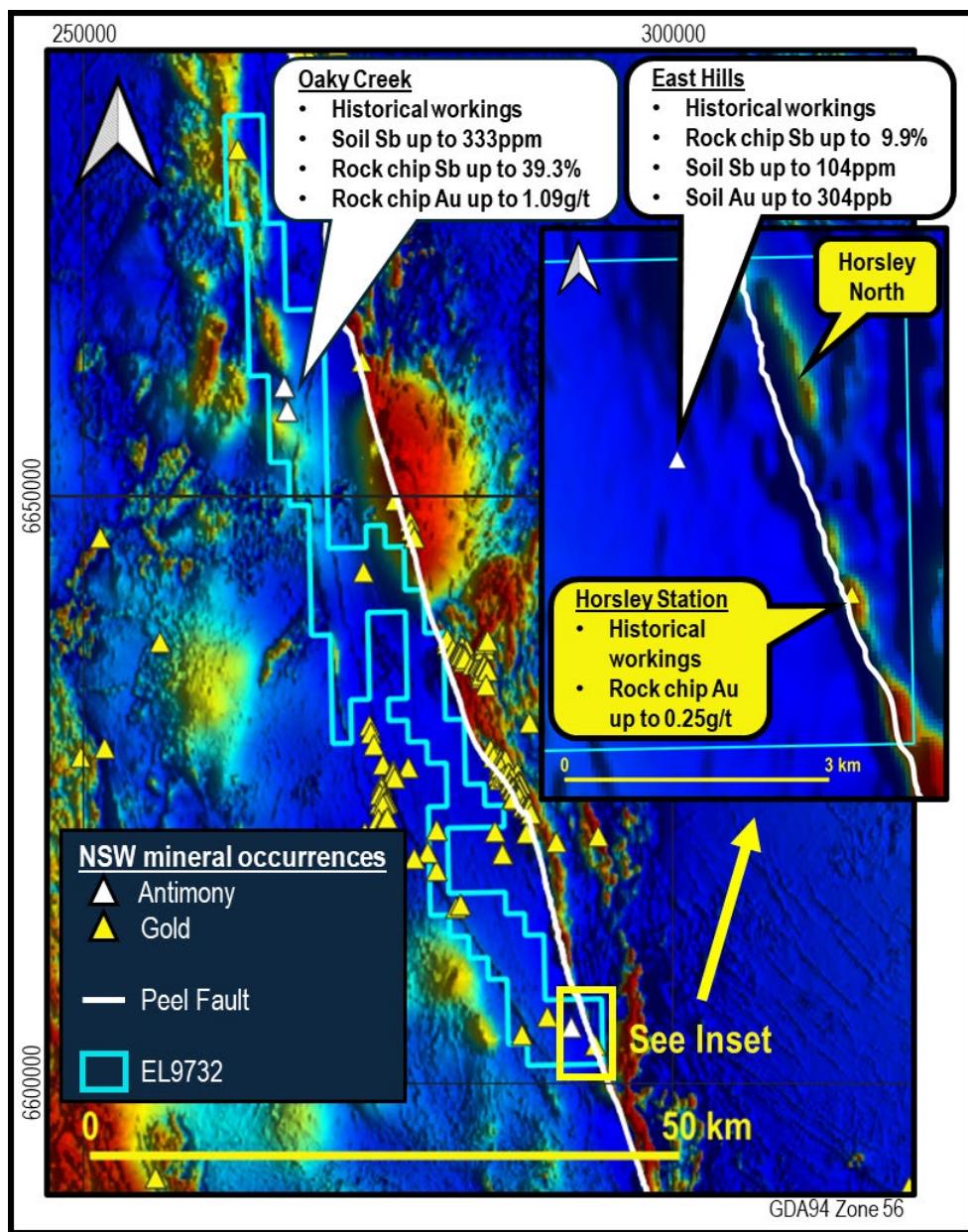
In September 2025, RMX collected 78 soil samples across a grid centered around a historical pit targeting antimony at East Hills in the southern portion of the tenement. Samples were collected at a 50m spacing on 100m spaced east-west oriented lines and screened to -80# in the field.


The soil antimony results define a generally NNW-trending strike-parallel anomaly, with a peak value of 104ppm Sb close to the historical workings and the previously reported⁴ rock chip sample containing **9.9% Sb** (Figure 6). The >5ppm Sb anomaly is open to the SSE, so further sampling in that direction may be warranted in the future.

⁴RMX ASX Announcement 15 October 2025: <https://investorhub.redmountainmining.com.au/announcements/7209330>

Figure 6: Individual soil sample results for antimony and contoured soil antimony for sampling at East Hills. Both anomalous (>5ppm Sb) and elevated (>2ppm Sb) values define a NNW-trend, which approximately parallels the strike in the area. Strongly anomalous rock chip samples of >500ppm Sb are also shown. The highest soil antimony value of 104ppm Sb lies close to the anomalous rock chip samples, including the sample containing 9.9% Sb and the small historical pit at East Hills.

Gold in soil results from East Hills are mostly <5ppb Au, with the exception of two samples that returned values of 14ppb Au and 304ppb Au (Appendix 2; Figure 7). These two samples appear to be spatially associated with the main NNW-trending antimony anomaly, suggesting that the mineralisation at East Hills is a similar orogenic antimony-gold system to that seen at Oaky Creek. However, based on results to date the system at East Hills is a lower priority for further exploration than the Oaky Creek prospect, which appears to be a larger target.


Figure 7: Individual soil sample results for gold and contoured soil antimony for sampling at East Hills. Elevated (>1ppb Au) gold samples, including the two strongly anomalous samples are generally spatially correlated with the NNW-trending antimony soil anomaly.

Next steps for the Armidale Antimony-Gold Project

With highly encouraging auger soil results now received from Oaky Creek South, RMX will seek to rapidly deploy to undertake a follow-up program of auger soil and rock chip sampling over the Oaky Creek North soil anomaly to define prospective drill targets. RMX will also extend the Oaky S Main grid to the northeast to test for the extension of the currently open anomaly and sample the area between the Main Grid and the historical workings at Oaky Creek South. The Company expects that

the results of this next round of sampling at Oaky Creek will enable Red Mountain to define the most promising targets for drilling in the first half of 2026.

As previously reported⁵, soil and rock chip sampling is also planned for the Horsley Station and Horsley North gold targets (Figure 8). RMX is planning further exploration across the numerous stibnite and jarosite spectral anomalies across the project, in particular those that lie adjacent to known mineralisation and/or are along the known major Peel, Namoi and Cobbadah faults.

Figure 8: Geological Survey of NSW total magnetic intensity reduced to pole (TMI RTP) imagery and location of gold and antimony mineral occurrences within and near to EL9732, summarising highlights of RMX's exploration to date and the location of the Oaky Creek and East Hills antimony prospects, Horsley Station gold prospect and Horsley North magnetic target. The mapped location of the Peel Fault is also shown.

⁵RMX ASX Announcement 11 July 2025 <https://investorhub.redmountainmining.com.au/announcements/7050680>

RMX | RMXFF Armidale Antimony-Gold Project Background

Red Mountain's 100%-owned Armidale Antimony-Gold project is located west of Australia's largest known antimony deposit, Larvotto's (ASX: LRV) Hillgrove deposit, which is also the 8th largest antimony deposit globally.

The New England Orogen is recognised as Australia's premier Antimony district (Figure 9). Antimony occurs in hydrothermal quartz veins, breccias and stockworks, often with associated gold and/or tungsten mineralisation.

Figure 9: Known NSW gold and antimony mineral occurrences relative to basement orogenic units. The map clearly demonstrates the prospectivity of the New England Orogen for antimony and gold. The location of LRV's Hillgrove Deposit, the Peel Fault and EL9732 are also shown.

Red Mountain's project extends for 85km along the western side of the Peel Fault. The Peel Fault System has recognised world-class mineral potential, with over 400 known orogenic gold and base metal mineral occurrences along its over 400km strike extent, but is underexplored, with less than 200 mostly shallow drillholes over its length, the majority of which are focused on discrete prospects.

Authorised for and on behalf of the Board,

Mauro Piccini

Company Secretary

About Red Mountain Mining

Red Mountain Mining Ltd (ASX: **RMX**, US CODE: **RMXFF**) is a Critical Minerals and Gold exploration and development company focussed on accelerating its United States and Australia based assets, located in Tier-1 Mining Districts.

Red Mountain is fast-tracking its Critical Minerals projects in the US and Australia, and the Board and Management is determined to rapidly define a portfolio of advanced projects to assist the United States and Western countries with a reliable, high-quality source of commodity supply, including from the Company's: **Armidale Antimony-Gold Project** located in NSW, Australia, which has delivered High-Grade Antimony samples to date (up to 39.3% Sb) and **US Critical Minerals Portfolio: Utah Antimony Project** in the Antimony Mining District of Utah, adjacent to Trigg Minerals' Antimony Canyon Project (ASX: **TMG**), **Yellow Pine Antimony Project**, with historic workings, less than 2km from Perpetua's Stibnite Project (NASDAQ: **PPTA**) in Idaho, **Silver Dollar Antimony Project** (Historic Antimony Mine), south of Yellow Pine, reporting up to 17.7% Sb and US Lithium Projects in Nevada.

Competent Person Statement

The information in this announcement that relates to Exploration Results and other technical information complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). It has been compiled and assessed under the supervision of contract geologist Mark Mitchell. Mr Mitchell is a Member of the Australasian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Mitchell consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Disclaimer

In relying on the above mentioned ASX announcement and pursuant to ASX Listing Rule 5.23.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above-mentioned announcement.

JOIN THE RED MOUNTAIN MINING INVESTOR HUB

Visit <https://investorhub.redmountainmining.com.au> for access to the Investor Hub

Appendix 1: Oaky Creek South hand auger soil sampling results

Sample details and analytical results for selected elements for hand auger soil samples from Oaky Creek South. Analyses of >100ppm Sb, >100ppm As and >5ppb Au are highlighted.

Sample ID	Location	GDA94 Zone 56		Sampling Depth (cm)	Field comments	Sb ppm	As ppm	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
		Easting	Northing									
AA001	Oaky S Main	266970	6657755	60		62.93	991	2	<0.05	66.1	10.8	73
AA002	Oaky S Main	266960	6657755	70		61.17	66	<1	<0.05	44.3	9.4	88
AA003	Oaky S Main	266950	6657755	30	Hit rock	16.65	203	<1	<0.05	61	10.1	88
AA004	Oaky S Main	266940	6657755	30	Hit rock	20.88	63	<1	<0.05	71.4	10.8	89
AA005	Oaky S Main	266930	6657755	50		9.48	170	2	<0.05	68.7	9.3	80
AA006	Oaky S Main	266920	6657755	30		6.3	102	1	<0.05	90.9	9.6	78
AA007	Oaky S Main	266910	6657755	50		5.39	16	1	0.07	64.4	8.7	79
AA008	Oaky S Main	266900	6657755	60		4.23	19	<1	<0.05	75.2	7.1	89
AA009	Oaky S Main	266890	6657755	30		3.34	12	2	<0.05	91.1	8.1	85
AA010	Oaky S Main	266880	6657755	30		5.91	22	2	<0.05	52.4	11.8	83
AA011	Oaky S Main	266870	6657755	30		8.18	12	1	<0.05	52.8	9	86
AA012	Oaky S Main	266860	6657755	40		4.86	29	2	0.06	63.4	9.1	73
AA013	Oaky S Main	266850	6657755	50		3.87	30	2	0.09	67.9	10	76
AA014	Oaky S Main	266840	6657755	40	Hit rock	4.05	24	<1	<0.05	67	9.6	72
AA015	Oaky S Main	266830	6657755	40	Hit rock	6.21	46	2	<0.05	61.1	10.5	72
AA016	Oaky S Main	266820	6657755	60		10.83	197	2	0.09	74	9.8	76
AA017	Oaky S Main	266810	6657755	60	Hit rock	4.49	41	1	0.06	62.4	11.4	75
AA018	Oaky S Main	266800	6657755	70	Hit rock	3.71	19	2	0.06	84.7	10.1	76
AA019	Oaky S Main	266790	6657755	50	Hit rock	7.43	20	3	0.07	84.6	8.6	88
AA020	Oaky S Main	266780	6657755	40	Hit rock, in creek bed	4.12	11	<1	<0.05	68.8	8.1	79
AA021	Oaky S Main	266780	6657745	30	Hit rock	4.63	6	<1	<0.05	54.3	9.8	71
AA022	Oaky S Main	266790	6657745	40	Hit rock	9.24	16	2	<0.05	85.6	7.8	86
AA023	Oaky S Main	266800	6657745	30		14.21	14	2	<0.05	64.8	8.4	68
AA024	Oaky S Main	266800	6657745	30	Repeat of AA023	13.34	15	2	<0.05	65	8.3	67
AA025	Oaky S Main	266810	6657745	50		12.15	15	1	<0.05	41.4	7	92
AA026	Oaky S Main	266820	6657745	50		12.91	130	2	0.08	71.8	10.4	81
AA027	Oaky S Main	266830	6657745	30	Hit rock	4.98	63	1	<0.05	74.2	10.6	65
AA028	Oaky S Main	266840	6657745	30	Hit rock	7.39	61	<1	<0.05	75	6.9	79
AA029	Oaky S Main	266850	6657745	70		1.74	12	1	0.06	41	10.2	80
AA030	Oaky S Main	266860	6657745	30	Hit rock	4.57	30	2	0.05	68.4	9.8	81
AA031	Oaky S Main	266870	6657745	60		3.95	15	2	<0.05	75.7	7.2	95
AA032	Oaky S Main	266880	6657745	30	Hit rock	3.55	12	<1	<0.05	40.2	8.1	78
AA033	Oaky S Main	266890	6657745	20	Hit rock	3.8	12	<1	<0.05	50.6	8.5	62
AA034	Oaky S Main	266900	6657745	60		9.43	19	2	0.08	95.3	8.4	85
AA035	Oaky S Main	266910	6657745	70		6.35	18	2	<0.05	69.1	9.2	82
AA036	Oaky S Main	266920	6657745	60	Hit rock	8.19	59	2	<0.05	68.7	7.9	81
AA037	Oaky S Main	266930	6657745	60		10.17	69	2	<0.05	62.6	10.4	93
AA038	Oaky S Main	266940	6657745	30	Orange rocks in sample	9.38	84	<1	<0.05	60.8	10.2	82
AA039	Oaky S Main	266950	6657745	50	Orange rocks in sample	19.65	44	<1	<0.05	69.4	9.5	78
AA040	Oaky S Main	266960	6657745	80	In drainage/transport	63.58	58	<1	<0.05	49.5	9.1	81
AA041	Oaky S Main	266970	6657745	50	Hit rock	19.32	233	<1	<0.05	56.1	9.5	65
AA042	Oaky S Main	266970	6657735	50	Hit rock	8.46	31	<1	<0.05	49.7	11.4	69
AA043	Oaky S Main	266960	6657735	30	Hit rock	19.55	113	1	<0.05	61.9	8.6	74
AA044	Oaky S Main	266950	6657735	70	In drainage/transport	160.71	132	2	0.12	68.9	9	72
AA045	Oaky S Main	266950	6657725	30	Hit rock	6.71	27	<1	<0.05	60	9.3	65
AA046	Oaky S Main	266960	6657725	30	Hit rock	13.97	31	<1	<0.05	56.1	10.9	62
AA047	Oaky S Main	266970	6657725	60		3.11	24	<1	<0.05	59.1	10.9	78
AA048	Oaky S Main	266970	6657715	60	Hit rock	0.94	18	1	0.06	86	10.3	93
AA049	Oaky S Main	266960	6657715	60		0.64	14	1	<0.05	46.6	9	84
AA050	Oaky S Main	266950	6657715	80		2.04	27	1	0.05	67.4	10	73
AA051	Oaky S Main	266940	6657725	80		1201.38	480	9	0.08	66.2	10.9	69
AA052	Oaky S Main	266940	6657715	80		61.26	111	2	<0.05	63.6	9.7	74
AA053	Oaky S Main	266930	6657715	70	Hit rock	321.26	267	7	0.05	44.2	13.2	59
AA054	Oaky S Main	266920	6657715	60	qz/calcite rocks in sample	41.51	99	1	<0.05	35.1	8.1	82
AA055	Oaky S Main	266920	6657725	30		11.81	72	2	<0.05	78.3	7.1	83
AA056	Oaky S Main	266920	6657735	60	Hit rock	11.02	35	1	<0.05	39.9	6.5	49

Sample ID	Location	GDA94 Zone 56		Sampling Depth (cm)	Field comments	Sb ppm	As ppm	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
		Easting	Northing									
AA057	Oaky S Main	266930	6657735	60		8.23	34	1	<0.05	54.7	7.1	100
AA058	Oaky S Main	266940	6657735	60		22.61	221	<1	<0.05	93.4	8.8	95
AA059	Oaky S Main	266930	6657725	60	Hit rock	17.1	88	1	0.05	72.4	8.9	80
AA060	Oaky S Main	266910	6657725	70		48.41	62	2	<0.05	57.8	8.9	81
AA061	Oaky S Main	266910	6657715	50		79.66	75	2	<0.05	62.1	9	76
AA062	Oaky S Main	266900	6657715	30	Hit rock	16.34	25	1	<0.05	68	8.1	78
AA063	Oaky S Main	266890	6657715	50		4.47	6	<1	<0.05	28.5	9.5	72
AA064	Oaky S Main	266890	6657725	40	Hit rock	8	21	1	0.05	51.3	8.9	66
AA065	Oaky S Main	266890	6657735	50		17.36	13	<1	<0.05	67.3	5.3	95
AA066	Oaky S Main	266900	6657735	50		12.19	8	1	0.06	42.2	10.5	78
AA067	Oaky S Main	266910	6657735	30	Hit rock	25.51	22	1	<0.05	50.7	10	86
AA068	Oaky S Main	266900	6657725	40	Hit rock	40.77	21	<1	<0.05	50.8	7.8	87
AA069	Oaky S Main	266970	6657705	80	Hit rock	1.87	34	1	0.06	72	9.2	95
AA070	Oaky S Main	266970	6657695	70	Hit rock	2.59	270	1	<0.05	64.1	7.9	86
AA071	Oaky S Main	266970	6657685	60	Very wet	2.54	37	<1	<0.05	56.6	8.5	80
AA072	Oaky S Main	266960	6657685	60		1.46	54	2	<0.05	58.3	7.6	99
AA073	Oaky S Main	266950	6657685	60		0.96	38	<1	0.06	40	13	81
AA074	Oaky S Main	266950	6657695	60		1.05	21	<1	<0.05	55.2	6.9	89
AA075	Oaky S Main	266950	6657705	60		0.99	17	<1	<0.05	94.4	8.7	85
AA076	Oaky S Main	266960	6657705	60		1.09	35	2	<0.05	77.6	9.2	80
AA078	Oaky S Main	266940	6657705	80		4.15	55	<1	<0.05	60.5	9.1	90
AA079	Oaky S Main	266960	6657695	50	Hit rock	1.43	37	2	0.08	86.9	8.5	90
AA080	Oaky S Main	266940	6657685	40		1.51	21	<1	<0.05	63.5	9.7	93
AA081	Oaky S Main	266940	6657695	30	Hit rock	1.41	17	<1	<0.05	59.7	9.2	89
AA082	Oaky S Main	266930	6657705	30	Hit rock	7.55	103	<1	<0.05	65.8	10.3	93
AA083	Oaky S Main	266920	6657705	30	Hit rock	69.31	124	1	<0.05	108.5	5.6	115
AA084	Oaky S Main	266920	6657695	20	Hit rock	6.92	47	<1	<0.05	63	7.8	76
AA085	Oaky S Main	266920	6657685	40	Red rock in sample, hit rock	2.31	72	<1	<0.05	58.6	8	77
AA086	Oaky S Main	266930	6657685	30	Hit rock	1.5	16	2	<0.05	129	5.5	85
AA087	Oaky S Main	266930	6657695	30	Hit rock	1.38	25	<1	<0.05	97.2	6.4	96
AA088	Oaky S Main	266910	6657705	40	Hit rock	46.3	380	<1	<0.05	59.6	10.6	65
AA089	Oaky S Main	266910	6657695	50	Close to stibnite float	47.49	110	2	<0.05	124.2	7.7	92
AA090	Oaky S Main	266910	6657685	60	Hit rock	3.72	29	<1	<0.05	68.7	8.3	73
AA091	Oaky S Main	266900	6657685	60	Hit rock	186.36	475	2	0.05	66.5	11.6	92
AA092	Oaky S Main	266890	6657685	30	Hit rock	50.33	51	<1	<0.05	56.2	10.4	87
AA093	Oaky S Main	266890	6657695	20	Hit rock	88.62	108	<1	<0.05	64.9	11.3	87
AA094	Oaky S Main	266890	6657705	40	Hit rock	101.94	81	1	0.05	49.9	10.6	77
AA095	Oaky S Main	266900	6657705	50	Red rocks in sample	28.62	16	<1	<0.05	31.5	7.2	74
AA096	Oaky S Main	266900	6657695	50	Hit rock	180.21	1040	6	0.05	59.6	13.2	94
AA097	Oaky S Main	266970	6657655	40	Hit rock	1.68	44	<1	<0.05	73.5	8.7	81
AA098	Oaky S Main	266970	6657665	40	Hit rock	1.3	36	<1	<0.05	75.1	9.2	88
AA099	Oaky S Main	266970	6657675	70		1.01	19	2	<0.05	76.2	5	77
AA100	Oaky S Main	266960	6657675	40	Hit rock	3.68	45	<1	<0.05	77.8	9.6	86
AA101	Oaky S Main	266950	6657675	70		1.58	18	1	0.05	41.5	7.9	88
AA102	Oaky S Main	266950	6657665	40	Hit rock	3.57	84	2	0.08	63.5	7.8	82
AA103	Oaky S Main	266950	6657655	30	Hit rock	1.23	39	<1	<0.05	110.5	5.7	100
AA104	Oaky S Main	266960	6657655	60	Very wet	2.06	49	2	<0.05	69.1	8.7	82
AA105	Oaky S Main	266960	6657665	60		1.29	14	<1	0.06	52	9.7	79
AA106	Oaky S Main	266940	6657675	30	Hit rock	1.24	20	<1	<0.05	96.2	5.8	94
AA107	Oaky S Main	266930	6657675	60		0.92	30	1	0.07	38.2	9.3	84
AA108	Oaky S Main	266920	6657675	20	Hit rock	1.36	22	1	<0.05	99.5	7.5	77
AA109	Oaky S Main	266910	6657675	30	Hit rock	1.2	15	1	<0.05	50.3	8.4	78
AA110	Oaky S Main	266900	6657675	40	Hit rock	3.18	27	1	<0.05	72.8	9.2	73
AA111	Oaky S Main	266910	6657665	60		1.38	26	3	<0.05	81.1	10.8	83
AA112	Oaky S Main	266920	6657665	60		0.95	11	1	<0.05	39.5	9.2	95
AA113	Oaky S Main	266940	6657655	40	Hit rock	4.14	59	<1	<0.05	38	7.6	87
AA114	Oaky S Main	266930	6657655	60	Hit rock	2.55	46	2	<0.05	63.9	6.2	90
AA115	Oaky S Main	266920	6657655	30	Hit rock	1.06	20	2	0.06	96.6	10.2	87
AA116	Oaky S Main	266910	6657655	80	Hit rock	1.96	25	3	0.05	49	12.4	81
AA117	Oaky S Main	266900	6657655	50		1.22	18	3	0.07	64.3	11.7	70
AA118	Oaky S Main	266890	6657655	50	Hit rock	1.97	24	1	0.06	62.6	10.1	75
AA119	Oaky S Main	266890	6657665	80		14.1	62	2	<0.05	90	9.3	92
AA120	Oaky S Main	266890	6657675	30	Hit rock	18.96	102	3	<0.05	60.7	10	87
AA121	Oaky S Main	266900	6657665	70		1.81	27	2	0.08	81.5	9.9	83
AA122	Oaky S Main	266930	6657665	30	Hit rock	1.49	29	1	<0.05	126.8	7.5	85
AA123	Oaky S Main	266940	6657665	40	Hit rock	1.41	19	<1	<0.05	40	8.2	87
AA124	Oaky S Main	266880	6657655	80		11.07	55	2	0.08	63	9.3	84
AA125	Oaky S Main	266880	6657665	50	Hit rock	27.69	68	3	0.06	67.9	10.3	85
AA126	Oaky S Main	266880	6657675	40		15.3	42	2	<0.05	63.2	6.8	88
AA127	Oaky S Main	266880	6657685	30	Hit rock	23.7	62	1	<0.05	45.4	9.5	71
AA128	Oaky S Main	266880	6657695	70	Hit rock	81.16	301	4	<0.05	70.4	11	78
AA129	Oaky S Main	266880	6657705	40	Hit rock	18.26	18	2	0.05	52.6	9.4	82
AA130	Oaky S Main	266880	6657715	60	Hit rock	6.2	15	1	0.06	90.6	9.2	73
AA131	Oaky S Main	266880	6657725	60	Hit rock	3.89	8	1	<0.05	53.2	8.7	86
AA132	Oaky S Main	266880	6657735	60	Hit rock	20.35	41	2	0.07	64.7	9.1	78
AA133	Oaky S Main	266880	6657735	30	Hit rock	2.31	7	<1	0.06	34.2	8.7	76

Sample ID	Location	GDA94 Zone 56		Sampling Depth (cm)	Field comments	Sb ppm	As ppm	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
		Eastng	Northng									
AA134	Oaky S Main	266840	6657735	30	Hit rock	1.35	23	1	<0.05	64.6	10.8	82
AA135	Oaky S Main	266820	6657735	30	Hit rock	5.73	62	<1	<0.05	56.8	10.4	70
AA136	Oaky S Main	266800	6657735	20	Hit rock	17.95	21	1	0.06	81.7	7.8	84
AA137	Oaky S Main	266780	6657735	60	Hit rock	5.78	7	<1	0.08	59.9	6.8	91
AA138	Oaky S Main	266860	6657715	60		8.11	15	2	0.08	67.3	10.3	78
AA139	Oaky S Main	266840	6657715	70	Hit rock	2.65	18	1	<0.05	54.7	9	89
AA140	Oaky S Main	266820	6657715	30	Hit rock	8.11	13	<1	<0.05	52.5	9.2	80
AA141	Oaky S Main	266800	6657715	50	Hit rock	21.8	24	<1	0.06	63.4	9.2	89
AA142	Oaky S Main	266780	6657715	40	Hit rock	2.71	17	<1	<0.05	63.3	8	79
AA143	Oaky S Main	266780	6657695	40	Hit rock	4.99	50	<1	<0.05	55.5	6	77
AA144	Oaky S Main	266780	6657675	40	Hit rock	19.93	105	<1	<0.05	60.3	6.9	75
AA145	Oaky S Main	266800	6657675	20	Rocky outcrop	5.18	42	<1	<0.05	69.1	6.7	81
AA146	Oaky S Main	266820	6657675	30	Hit rock	20.34	53	2	0.06	85.6	8.4	78
AA147	Oaky S Main	266840	6657675	30	Hit rock	367.28	254	3	<0.05	57.4	9.7	71
AA148	Oaky S Main	266860	6657675	30	Hit rock	17.64	40	1	<0.05	52.7	7.8	72
AA149	Oaky S Main	266860	6657655	30	Hit rock	5.55	72	1	<0.05	101.5	7.9	84
AA150	Oaky S Main	266840	6657655	70	Hit rock	11.03	67	<1	<0.05	66	8.4	76
AA151	Oaky S Main	266820	6657655	10	Rocky Outcrop	199.99	54	<1	<0.05	54.8	6.3	81
AA152	Oaky S Main	266800	6657655	40	Hit rock	20.58	39	<1	<0.05	65.7	7.6	80
AA153	Oaky S Main	266780	6657655	30	Hit rock	5.4	61	<1	<0.05	58.7	7.7	83
AA154	Oaky S Main	266800	6657695	70	Hit rock	5	20	4	0.07	55.3	10.1	72
AA155	Oaky S Main	266820	6657695	70	Hit rock	5.14	14	2	0.05	58.7	9.6	80
AA156	Oaky S Main	266840	6657695	50	Hit rock	10.17	19	<1	<0.05	52.4	6.6	77
AA157	Oaky S Main	266860	6657695	70	Hit rock	113.37	58	2	<0.05	57.1	9.7	89
AA159	Oaky S Main	266700	6657715	60		1.14	13	1	<0.05	45.3	7.4	89
AA160	Oaky S Main	266700	6657695	50	Hit rock	1.66	16	1	<0.05	53.6	7.2	96
AA161	Oaky S Main	266700	6657675	60		1.03	15	1	<0.05	57.8	7.6	91
AA162	Oaky S Main	266700	6657655	60		1.44	29	1	0.06	49.1	9.1	89
AA163	Oaky S Main	266700	6657635	90	Very wet, creek bed	26.79	58	1	0.08	60.5	7.9	79
AA164	Oaky S Main	266760	6657635	70		0.9	13	<1	<0.05	47	5.5	78
AA165	Oaky S Main	266720	6657615	70	Hit rock	1.61	32	2	<0.05	50.8	7.1	75
AA166	Oaky S Main	266740	6657615	40	Hit rock	5.99	156	1	<0.05	45.7	8.6	94
AA167	Oaky S Main	266760	6657615	40	Hit rock	1.17	23	<1	<0.05	46.5	6.6	87
AA168	Oaky S Main	266780	6657615	60	Hit rock	1.22	21	<1	<0.05	52.1	7.1	73
AA169	Oaky S Main	266800	6657615	80	Very wet	1.79	10	<1	<0.05	32.4	8	62
AA170	Oaky S Main	266800	6657635	70	Hit rock	19.15	49	<1	0.07	56	7.1	86
AA171	Oaky S Main	266780	6657635	50	Hit rock	43.64	41	<1	<0.05	48.5	8.4	89
AA172	Oaky S Main	266700	6657615	30	Hit rock	1.32	62	<1	<0.05	44.8	9	77
AA173	Oaky S Main	266740	6657635	60		3.82	79	<1	0.1	46	10.1	74
AA174	Oaky S Main	266720	6657635	60		0.89	12	<1	<0.05	23.1	8.6	80
AA175	Oaky S Main	266720	6657655	70	Hit rock	1.17	23	1	<0.05	69.3	8.1	93
AA176	Oaky S Main	266740	6657655	40		1.35	20	<1	<0.05	65.6	6	89
AA177	Oaky S Main	266760	6657655	30	Hit rock	2.54	27	<1	<0.05	47.5	6.9	101
AA178	Oaky S Main	266760	6657675	80	Hit rock	1.28	7	1	<0.05	25.5	7	66
AA179	Oaky S Main	266740	6657675	10	Hit rock	1.46	12	<1	<0.05	49.5	5.9	80
AA180	Oaky S Main	266720	6657675	30	Hit rock	1.27	12	<1	<0.05	52.8	7.3	88
AA181	Oaky S Main	266760	6657695	70		2.63	11	2	<0.05	91.3	8.8	92
AA182	Oaky S Main	266740	6657695	60		0.97	7	<1	0.05	26.1	7.9	80
AA183	Oaky S Main	266720	6657695	30	Hit rock	0.75	9	<1	<0.05	47	6.8	77
AA184	Oaky S Main	266720	6657715	40	Hit rock	0.55	9	<1	<0.05	78.6	8	80
AA185	Oaky S Main	266740	6657715	70	Red rocks in sample	11.43	29	<1	<0.05	60.6	8.1	93
AA186	Oaky S Main	266760	6657715	50	Hit rock	2.26	9	<1	<0.05	65.7	6.9	81
AA187	Oaky S Main	266900	6657615	50	Hit rock	1.18	22	1	0.06	77.4	8.5	85
AA188	Oaky S Main	266900	6657635	50	Hit rock	9.24	192	2	<0.05	77	9.9	82
AA189	Oaky S Main	266880	6657635	70	Hit rock	4.16	43	<1	<0.05	58.3	9	69
AA190	Oaky S Main	266880	6657615	70		0.53	18	2	<0.05	157.6	6.2	81
AA191	Oaky S Main	266860	6657615	80		2.15	38	<1	<0.05	76.7	6.7	82
AA192	Oaky S Main	266860	6657635	30	Hit rock	0.87	13	2	<0.05	65.2	7.7	76
AA193	Oaky S Main	266840	6657615	60	Hit rock	1.98	32	<1	<0.05	64.8	7.4	77
AA194	Oaky S Main	266840	6657635	50	Hit rock	11.22	36	<1	0.09	53.3	8.3	77
AA195	Oaky S Main	266820	6657635	30	Hit rock, orange rocks in sample	2.33	59	<1	<0.05	74.4	7	89
AA196	Oaky S Main	266820	6657615	70	Creek bed transport	3.73	39	<1	<0.05	61	7.4	71
AA197	Oaky S Pit	267133	6657319	70	Hit rock	66.16	64	<1	<0.05	86.6	10.1	99
AA198	Oaky S Pit	267140	6657328	70	Hit rock	128.53	189	1	<0.05	63.7	10.3	88
AA199	Oaky S Pit	267146	6657336	60	Hit rock	531.31	297	2	<0.05	62.4	10.9	64
AA200	Oaky S Pit	267154	6657347	50	Hit rock	356.47	73	1	<0.05	50.9	7.3	87
AA201	Oaky S Pit	267162	6657359	100	On shaft edge/mullock, visible stibnite	13625	351	14	<0.05	47.4	16.1	71
AA202	Oaky S Pit	267170	6657371	20	Hit rock	79.13	90	<1	<0.05	66.8	9.3	86
AA203	Oaky S Pit	267177	6657379	60		36.28	43	<1	<0.05	75.1	9.2	97
AA204	Oaky S Pit	267182	6657387	50	Hit rock	39.5	44	1	0.07	67.1	8.1	69
AA205	Oaky S Minor	267110	6657680	40	Wet, in drainage/transport	2.46	90	1	<0.05	28.7	8.9	101
AA206	Oaky S Minor	267110	6657660	90	Very wet, in drainage/transport	2.99	83	1	0.19	42.3	8.4	107

Sample ID	Location	GDA94 Zone 56		Sampling Depth (cm)	Field comments	Sb ppm	As ppm	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
		Eastng	Northing									
AA207	Oaky S Minor	267110	6657640	70		2.92	26	2	0.82	45.2	13	136
AA208	Oaky S Minor	267110	6657620	30	Hit rock	2.88	20	1	0.13	53.7	12.7	155
AA209	Oaky S Minor	267110	6657600	40	Hit rock	3.05	15	<1	0.08	48.2	12	157
AA210	Oaky S Minor	267110	6657580	40	Hit rock	3.87	96	<1	0.1	57.3	11.8	135
AA211	Oaky S Minor	267110	6657560	60		7.38	247	2	0.16	34.2	9.5	75
AA212	Oaky S Minor	267130	6657680	70	Hit rock	3.12	20	1	0.12	18.5	6.5	58
AA213	Oaky S Minor	267150	6657680	80	Wet	1.27	10	<1	<0.05	18.1	5.9	49
AA214	Oaky S Minor	267150	6657660	20	Hit rock, Shale, mm-wide oxide veinlets	2.91	117	<1	0.06	47.3	11.4	120
AA215	Oaky S Minor	267130	6657660	70	Wet, In drainage/transport, hit rock	3.97	67	2	0.14	25.3	11	98
AA216	Oaky S Minor	267130	6657640	100	Wet	1.97	69	<1	0.08	32	8.2	107
AA217	Oaky S Minor	267150	6657640	30	Shale	1.65	59	1	<0.05	36.9	9.7	103
AA218	Oaky S Minor	267150	6657620	20	Shale	0.56	28	<1	<0.05	30.3	5.5	93
AA219	Oaky S Minor	267130	6657620	40	Sandstone, shale, hit rock	2.25	87	<1	0.06	36.8	8.5	110
AA220	Oaky S Minor	267130	6657600	70		4.58	37	2	0.27	42.2	12.1	137
AA221	Oaky S Minor	267150	6657600	70	Shale, hit rock	1.89	92	2	<0.05	39.6	10.3	91
AA222	Oaky S Minor	267150	6657580	80		1.24	150	<1	<0.05	34.2	8.4	90
AA223	Oaky S Minor	267130	6657580	30	Shale	2.39	22	1	0.07	47.1	11.4	129
AA224	Oaky S Minor	267130	6657560	40	Shale	6.49	138	2	0.12	50.5	10.7	107
AA225	Oaky S Minor	267150	6657560	100		1.49	70	<1	0.05	26.3	7.3	90
AA226	Oaky S Minor	267170	6657680	70	Wet, drainage	0.76	10	<1	0.16	36.6	9.1	95
AA227	Oaky S Minor	267170	6657660	60	Shale	1.29	29	1	0.12	34.6	11	77
AA228	Oaky S Minor	267190	6657660	80	Very wet, near drainage	1.54	40	<1	0.14	39.4	8.8	78
AA229	Oaky S Minor	267190	6657680	100	In drainage	0.47	5	<1	0.21	29.5	6.8	85
AA230	Oaky S Minor	267170	6657600	50	Greywacke	1.58	123	<1	0.08	24.1	6	96
AA231	Oaky S Minor	267170	6657620	30	Shale, Greywacke, hit rock	1.73	36	<1	<0.05	36.5	10.1	107
AA232	Oaky S Minor	267170	6657640	30	Shale, Mn veinlets?	1.22	21	<1	<0.05	24.5	9	80
AA233	Oaky S Minor	267190	6657640	40	Sandstone, hit rock	1.31	26	2	<0.05	27.5	6.8	81
AA234	Oaky S Minor	267190	6657620	60	Shale, sandstone, hit rock	1.55	41	<1	<0.05	34.3	8.8	84
AA235	Oaky S Minor	267190	6657600	30	Shale, sandstone, hit rock	3.16	38	1	<0.05	31.6	11.2	97
AA236	Oaky S Minor	267190	6657580	40	Greywacke, shale, hit rock	3.26	68	1	<0.05	29	7.1	77
AA238	Oaky S Minor	267170	6657580	20	Greywacke, Mn veinlets?	1.79	58	1	<0.05	27.4	8.2	114
AA239	Oaky S Minor	267170	6657560	70		5.88	89	1	<0.05	30.7	9.6	77
AA240	Oaky S Minor	267190	6657560	80	Minor sediments, traces of Mn?	1.13	27	<1	<0.05	10.4	3.7	61
AA241	Oaky S Minor	267210	6657560	20	Shale, sandstone, hit rock	21.92	259	2	<0.05	272	9.9	238
AA242	Oaky S Minor	267210	6657580	50	Greywacke	3.02	46	<1	<0.05	10.9	6.7	64
AA243	Oaky S Minor	267210	6657640	20	Greywacke, hit rock	1.66	56	<1	<0.05	33.5	9.6	87
AA244	Oaky S Minor	267230	6657640	40	Shale	1.2	6	2	0.08	38.2	9	80
AA245	Oaky S Minor	267230	6657620	80	Wet	2.2	20	<1	0.08	35.3	9.1	88
AA246	Oaky S Minor	267210	6657620	80	Very wet, shale	2.46	29	<1	<0.05	35.5	9	102
AA247	Oaky S Minor	267210	6657600	10	Greywacke, shale, turbidite, hit rock	2.21	24	<1	0.06	37.3	10	120
AA248	Oaky S Minor	267230	6657600	50	Shale, hit rock, traces of Mn?	3.57	17	<1	<0.05	29.5	9.7	92
AA249	Oaky S Minor	267230	6657580	10	Shale, 5 shallow holes	4.8	40	<1	<0.05	39.6	12.3	121
AA250	Oaky S Minor	267230	6657560	60	minor sediments (greywacke?)	8.75	40	2	0.06	41.3	11.8	95

Appendix 2: East Hills soil sampling results

Sample details and analytical results for selected elements soil samples from East Hills. Analyses of >5ppm Sb, >20ppm As and >5ppb Au are highlighted.

Sample ID	GDA94 Zone 56		Sampling depth cm	Field comments	Sb ppm	As ppm	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
	Eastings	Northings									
AAS879	291150	6605200	20	Adjacent to subcrop of sandstone & conglomerate	2.44	10	2	0.07	34.7	10.9	61
AAS880	291200	6605200	30		4.50	17	2	<0.05	47.9	12	84
AAS881	291250	6605200	30	Shale	3.66	11	<1	<0.05	34.8	14.1	92
AAS882	291300	6605200	15	Sandstone	0.96	6	<1	<0.05	36	12.8	83
AAS883	291350	6605200	20		0.89	5	<1	0.05	31.6	13.6	97
AAS884	291400	6605200	25	Sandstone	1.21	7	<1	<0.05	25.1	11.4	66
AAS885	291450	6605200	15	Fine grained Sandstone	1.01	10	<1	<0.05	29.2	11	84
AAS886	291500	6605200	20	Adjacent to greywacke subcrop	1.74	7	2	<0.05	23.9	8.1	55
AAS887	291550	6605200	10	Fine grained Sandstone	0.74	8	1	<0.05	36	11.2	93
AAS888	291600	6605200	15	Fine grained Sandstone	0.66	10	<1	<0.05	47.6	8.3	90
AAS889	291650	6605200	15	Fine grained Sandstone & shale	1.18	8	<1	<0.05	39.7	11.9	86
AAS890	291650	6605100	25	Minor shale	1.22	9	<1	<0.05	30.8	10.9	76
AAS891	291600	6605100	25	Wet	1.52	9	<1	<0.05	34.4	10.8	69
AAS892	291550	6605100	10	Shale; quartz veining.	2.48	10	1	0.06	33.7	11.4	96
AAS893	291500	6605100	25	Minor shale	1.90	10	<1	<0.05	36.6	11.2	74
AAS894	291450	6605100	25	Minor shale	1.61	9	<1	<0.05	28.3	10.7	76
AAS895	291150	6605000	30	Minor shale	1.16	10	<1	<0.05	31.7	11.4	86
AAS896	291200	6605000	15	Fine grained sandstone & shale	0.57	8	<1	<0.05	45.4	13.9	111
AAS897	291250	6605000	25	Shale & Sandstone	1.86	14	1	<0.05	46.4	16.4	92
AAS898	291300	6605000	20	Shale & Sandstone	2.74	14	2	<0.05	38.1	10.1	79
AAS899	291350	6605000	20	Oxidised sandstone	2.85	10	<1	<0.05	31.8	10.6	78
AAS900	291400	6605000	15	Minor shale	4.16	8	1	0.05	42.3	13.9	91
AAS901	291450	6605000	10	Sandstone	0.71	6	<1	<0.05	41.4	11.2	105
AAS902	291450	6604900	10	Shale & fine grained sandstone	1.08	4	<1	<0.05	39.1	12.9	129
AAS903	291400	6604900	5	Fine grained sandstone	104.29	28	2	<0.05	38.9	9.2	78
AAS904	291350	6604900	20		3.12	7	2	<0.05	36.3	10	72
AAS905	291300	6604900	10	Conglomerate	1.81	15	1	<0.05	24.7	6.9	96
AAS906	291250	6604900	20	Fine grained sandstone & shale	1.27	10	<1	<0.05	31.1	11.8	128
AAS907	291200	6604900	20	Shale	1.31	7	<1	<0.05	29.6	12.9	110
AAS908	291150	6604900	20	Shale & fine grained sandstone	0.65	7	1	<0.05	52.8	11.4	95
AAS909	291450	6604800	15	Fine grained sandstone	0.69	9	<1	<0.05	36.5	11.1	75
AAS910	291400	6604800	5	Directly above coarse sandstone outcrop	8.15	11	<1	<0.05	15.2	5.3	62
AAS911	291350	6604800	15	Fine grained sandstone & shale	2.23	6	<1	<0.05	27.3	10.3	94
AAS912	291300	6604800	20	Fine grained sandstone & shale	1.58	8	<1	<0.05	34.2	12.7	112
AAS913	291250	6604800	20	Minor fine grained sandstone	1.39	8	<1	<0.05	25.9	12.5	103
AAS914	291200	6604800	25		3.04	13	2	<0.05	46.2	11.4	86
AAS915	291150	6604800	15		4.22	10	<1	<0.05	33.2	11.9	131
AAS916	291150	6604700	15	Minor shale & fine grained sandstone	2.39	8	<1	<0.05	26.7	11.2	93
AAS917	291200	6604700	15	Fine grained sandstone	2.24	10	<1	<0.05	30.4	11.1	86
AAS918	291250	6604700	20	Minor shale	2.28	10	<1	<0.05	29.1	11.4	98
AAS919	291300	6604700	10	On Dam wall, minor shale	2.35	15	2	<0.05	36.4	10.6	84
AAS920	291350	6604700	10	Minor sandstone	2.70	6	<1	<0.05	24.2	10.9	99
AAS921	291400	6604700	5	Directly above conglomerate outcrop	2.70	5	<1	<0.05	18.6	6.3	99
AAS922	291450	6604700	10	Fe-oxide rich,qtz veining sub cropping in hole	5.14	36	14	<0.05	24.7	7.4	69
AAS923	291450	6604600	10	Altered sandstone in hole	5.74	7	1	<0.05	33.7	7.1	76
AAS924	291400	6604600	10	Directly on shale outcrop	2.34	7	1	<0.05	34.3	13.6	104
AAS925	291350	6604600	10	Sandstone	1.53	8	<1	<0.05	38.9	12.6	86

Sample ID	GDA94 Zone 56		Sampling depth cm	Field comments	Sb ppm	As ppm	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
	Eastng	Northing									
AAS926	291300	6604600	20	Fine grained sandstone & shale	2.52	13	<1	<0.05	29.7	14.3	103
AAS927	291250	6604600	20	Minor shale/sandstone	3.61	17	<1	<0.05	34.2	12.6	104
AAS928	291200	6604600	20	Minor shale/sandstone	2.84	13	<1	<0.05	29.9	11.5	91
AAS929	291150	6604600	10	Sandstone/shale	2.16	9	1	<0.05	25.3	11.3	96
AAS930	291400	6605100	15	Sandstone; steep slope	0.78	4	<1	<0.05	23.3	10.5	123
AAS931	291350	6605100	5	Sandstone, mnr bucky quartz; steep slope	1.41	10	1	<0.05	18.5	9.1	83
AAS932	291300	6605100	15	Steep slope	2.73	10	3	0.08	28.7	12.7	74
AAS933	291250	6605100	10	Steep slope	2.03	21	2	<0.05	20.3	7.9	84
AAS934	291200	6605100	5	Sandstone, mnr quartz veining; steep slope	0.13	3	304	0.06	19.4	5.4	67
AAS935	291150	6605100	10	Fine grained Sandstone & shale; steep slope	1.85	21	2	<0.05	21.4	7.5	87
AAS937	291500	6604900	10	Fine grained sandstone; steep slope	0.70	12	<1	<0.05	45.7	9.4	77
AAS938	291550	6604900	10	Fine grained Sandstone & shale; steep slope	0.95	9	<1	<0.05	39.1	12.4	78
AAS939	291600	6604900	10	Fine grained sandstone; steep slope	1.28	7	1	<0.05	40.6	12.9	88
AAS940	291650	6604900	5	Fine grained sandstone; steep slope	3.03	9	<1	<0.05	21.3	8.1	88
AAS941	291600	6605000	10	Steep slope	1.46	12	2	<0.05	30.5	9.6	67
AAS942	291550	6605000	10	Fine grained sandstone; steep slope	2.56	19	<1	<0.05	39.6	13.3	87
AAS943	291650	6605000	10	Coarse grained sandstone; steep slope	2.27	12	2	<0.05	22.1	6.8	66
AAS944	291500	6605000	5	Fine grained sandstone; steep slope	0.73	5	<1	<0.05	42.5	13.7	85
AAS945	291600	6604600	10	Red oxidised sandstone	0.80	5	<1	<0.05	34.2	11.4	97
AAS946	291600	6604600	10	DUPLICATE AAS945	5.83	6	<1	<0.05	33.5	11.5	96
AAS947	291500	6604800	10	Fine grained sandstone	1.03	5	<1	<0.05	31.8	10.1	94
AAS948	291550	6604800	15	Minor shale	0.58	3	<1	<0.05	23.9	11.9	96
AAS949	291600	6604800	15	Minor shale	0.59	2	<1	<0.05	29.5	11.5	97
AAS950	291650	6604800	10	Fine grained sandstone; steep slope	0.59	3	<1	<0.05	27.6	10	107
AAS951	291650	6604700	15	Fine grained sandstone	0.72	6	<1	<0.05	31.7	10.7	69
AAS952	291600	6604700	10	Fine grained sandstone	0.88	4	<1	<0.05	38.1	11.1	114
AAS953	291550	6604700	20		5.40	14	<1	<0.05	26.3	9.2	83
AAS954	291500	6604700	20		2.67	12	<1	<0.05	24.3	9	106
AAS955	291500	6604600	20	Minor sandstone	2.92	10	1	<0.05	26.8	8.6	81
AAS956	291550	6604600	10	Minor rock	1.42	6	<1	<0.05	25.6	9.1	105
AAS957	291650	6604600	5	Scraped off rock subcrop	0.62	5	<1	<0.05	32.7	11.7	92

JORC Code, 2012 Edition - Table 1

1.1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> Rock samples were collected from 1kg grab samples. Rock chip samples were selective based on visual appearance and are not used for resource determination, only to check if mineralisation is present. All samples are exploration in nature and not for resource determination. Rock, auger & Soil samples have been sent to Intertek Townsville laboratory with the auger and soils forwarded on to the Perth Laboratory. Rock samples were assayed by sodium peroxide fusion FP6/OM for Sb, Ag, As and W with an ICP_MS finish Au was analysed by 50g lead fire assay with a ICP-OES finish (FA50/OEO2) where rock samples were analysed at the Townsville facility. Auger and Soil samples will be treated by Aqua regia digest with a 25g charge assayed by ICP-MS for a 52-element suite. All auger samples were collected on 10 to 20m spaced grids or single traverses at 25m. Soils were collected on a 50m centred grid. Auger samples targeted the C soil horizon usually averaged around 50cm depth in clays while soil horizons targeted the B soil horizon averaging 15cm
<i>Drilling techniques</i>	<ul style="list-style-type: none"> <i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details</i> 	<ul style="list-style-type: none"> No drilling reported

Criteria	JORC Code explanation	Commentary
	<i>(e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i>	
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> No drilling reported.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> No drilling reported. Rock sampling is not used for resource estimation.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ</i> 	<ul style="list-style-type: none"> Rock chip sampling was biased towards outcrop/subcrop that was altered or appeared mineralised. Rock grab samples were taken raw and approximately 1kg each. Grab rock samples are first pass with size appropriate for initial work and not intended for grade purposes. Auger samples were generally 1kg in size taken raw while soil samples consisted of 250g of -80mesh

Criteria	JORC Code explanation	Commentary
	<p><i>material collected, including for instance results for field duplicate/second-half sampling.</i></p> <ul style="list-style-type: none"> • <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<p>material.</p> <ul style="list-style-type: none"> • Auger and soil samples were taken on a predetermined grid basis to ensure representivity. • All sample sizes collected are considered appropriate for the techniques and mineralisation targeted.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> • <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> • <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> • <i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> • Rocks were treated at Intertek and with standard procedure of drying, crushed, pulverized (in Nickel crucibles) and sodium peroxide fused and finished with ICP-MS. The rock samples were tested for Au by Fire assay using 50g charges and MS finish. • Sodium Peroxide fusion is considered an appropriate method for antimony and FA is considered appropriate for gold. • Assay techniques used are considered appropriate for the style of mineralisation targeted. • No geophysical or pXRF tools used. • For the auger and soil sampling, duplicates and standards were used at every 50 samples which should provide acceptable levels of accuracy on the basis on previous QA & QC done.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> • <i>The verification of significant intersections by either independent or alternative company personnel.</i> • <i>The use of twinned holes.</i> • <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> 	<ul style="list-style-type: none"> • No drill holes reported.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>Discuss any adjustment to assay data.</i> 	
<i>Location of data points</i>	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> All sample taken with GPS readings with site locations recorded in GDA94 (z56). No mineral resource estimation was conducted.
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> Rock sample spacing was biased towards available outcrop which was limited away from incised creek exposures. Sample spacing is considered appropriate for initial first pass sampling. Being exploration, any sample results will not be considered sufficient for any ore determinations. No analytical compositing has been reported
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> Rock samples were collected along outcrop with strike and dip recorded where available. No drilling conducted
<i>Sample security</i>	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> Samples were managed by field staff, individually double wrapped and sealed in a 1-ton bulk which was dropped off in a freight forwarding yard. Samples arrived at

Criteria	JORC Code explanation	Commentary
		the laboratory sealed.
<i>Audits or reviews</i>	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> No audit or reviews of sampling techniques and data was reported

1.2 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The Exploration licence EL9732 is granted and 100% wholly owned by Red Mountain Mining and covers 391km². The licence is predominantly in Freehold pastoral properties and as such Native Title is extinguished.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> The north-south elongate corridor covered by the project contains no historical mineral exploration drilling and has seen limited previous surface exploration for Antimony and Gold mineralisation. No soil sampling for these elements has been undertaken and rockchip and stream sediment coverage is limited, leaving the majority of the tenement untested by systematic exploration and therefore is considered having significant potential for discovery. Icon Resources Ltd conducted exploration over the Dunmore target, Baldwin project EL6682 in 2008, data taken from the open file reports at NSW Resources.

Criteria	JORC Code explanation	Commentary
<i>Geology</i>	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The project is located in the Southern New England Orogen. The geology of the tenement is dominated by isoclinally folded Carboniferous metasediments of the Tamworth Belt which is a forearc basin package related to west-dipping subduction of oceanic crust beneath the Lachlan Orogen. Ultramafic melanges of the Great Serpentinite Belt, which outcrop along the Peel Fault, are considered to be remnants of this oceanic crust. The style of mineralisation target is hydrothermal quartz veins, breccia and stockworks derived from fluids during regional compression and resulting faulting providing the conduits to the fluids.
<i>Drill hole Information</i>	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> No drilling conducted

Criteria	JORC Code explanation	Commentary
<i>Data aggregation methods</i>	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> No aggregated methods are reported
<i>Relationship between mineralisation widths and intercept lengths</i>	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> No relationship is made between mineralisation width and intercept lengths
<i>Diagrams</i>	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Appropriate location diagram is presented in the text. The diagram is indicative only as no assumptions of grade, extent or depth are made.
<i>Balanced reporting</i>	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading</i> 	<ul style="list-style-type: none"> Only pertinent results are given as due to the relevance of the announcement.

Criteria	JORC Code explanation	Commentary
	<i>reporting of Exploration Results.</i>	
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> There is no other substantive exploration data provided or withheld as this announcement deals with this early phase exploration target.
<i>Further work</i>	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> The forward work programme aim to test the stibnite vein system and extensions through further augering to generate targets for drilling to determine the 3D extent (depth, layering and lateral extent) of the stibnite mineralisation. The use of supplementary geophysics is being considered with CSAM techniques being investigated. Also, RMX is considering undertaking a metallurgical bench testing towards making a commercial concentrate at a >80% recovery of Sb. Diagrams of the sampling positions have been provided in the text.