

PROSPECT ANNOUNCES DISCOVERY OF NEW MINERALISED ZONE DURING PHASE 5 DRILLING

Arcadia is the largest JORC Code reported lithium deposit in Africa – comprising 755 000t contained lithium oxide (over 1 850 000t contained lithium carbonate equivalent – LCE)

Highlights:

- **Delineation of new mineralised zone; the Basal Pegmatite**
- **Average grade of 1.29% Li₂O over 16.8m, with peak grade of 4.06% Li₂O**
 - **Notable high grade intercepts of:**
 - **3.40% Li₂O over 5m**
 - **2.45% Li₂O over 10m**
 - **2.54% Li₂O over 8m**
 - **Covers an area of at least 35 hectares.**

Prospect Resources Ltd (ASX: PSC) (the "Company") is pleased to announce the delineation of a new mineralised zone; the Basal Pegmatite (BP).

This mineralised zone, which was originally thought to be in part, a down-faulted part of the Lower Main Pegmatite (LMP) has now been explored more thoroughly during the recent Phase 5 RC drilling.

The Basal Pegmatite (BP) has been intersected in a total of twelve Phase 5 drill holes and covers an area of at least 35 hectares on the south west edge of the planned pit. The average grade for all 21 BP intercepts in this and the previous phases of drilling is 1.29% Li₂O over 16.8m.

This mineralised body lies some 34 – 40m below the Lower Main Pegmatite.

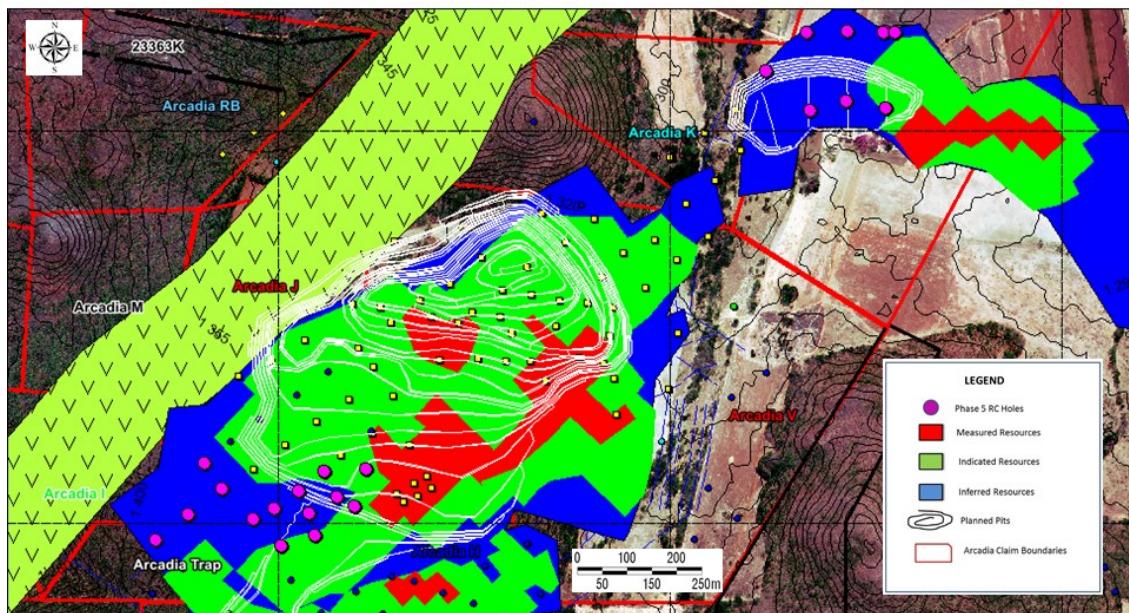
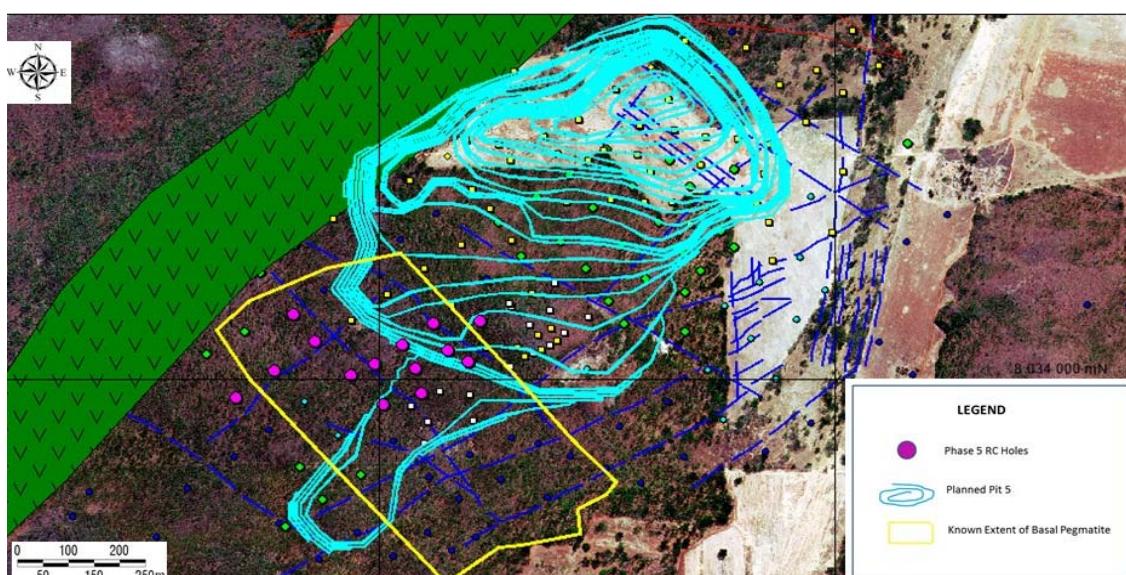

The total defined volume of the BP is 6 million cubic metres, and upgrading this zone to at least an Indicated Mineral Resource category will be the focus of the planned Phase 6 RC drilling programme.

Table 1- Basal Pegmatite Intercepts in Phase 5 RC Holes


Hole	Unit	From (m)	To (m)	Thickness m	Grade % Li ₂ O
ACR168	Basal Pegmatite	95.0	108.0	13.00	1.30
	<i>includes</i>	95.0	100.0	5.00	3.40
ACR169	Basal Pegmatite	106.0	122.0	16.00	1.14
	<i>includes</i>	106.0	113.0	7.00	2.02
ACR172	Basal Pegmatite	79.0	100.0	21.00	1.39
	<i>includes</i>	91.0	100.0	9.00	1.66
ACR174	Basal Pegmatite	70.0	89.0	19.00	1.77
	<i>includes</i>	80.0	89.0	9.00	2.13
ACR176	Basal Pegmatite	63.0	81.0	18.00	1.76
	<i>includes</i>	63.0	73.0	10.00	2.45
ACR177	Basal Pegmatite	46.0	49.0	3.00	1.26
ACR179	Basal Pegmatite	122.0	138.0	16.00	0.05
ACR184	Basal Pegmatite	91.0	116.0	25.00	1.69
	<i>includes</i>	107.0	113.0	6.00	2.56
ACR185	Basal Pegmatite	85.0	110.0	25.00	0.90
	<i>includes</i>	105.0	109.0	4.00	1.55
ACR186	Basal Pegmatite	71.0	93.0	25.00	0.90
	<i>includes</i>	85.0	93.0	8.00	1.28
ACR187	Basal Pegmatite	102.0	131.0	29.00	1.67
	<i>includes</i>	102.0	110.0	8.00	2.54
ACR188	Basal Pegmatite	88.0	108.0	20.00	1.60
	<i>includes</i>	88.0	97.0	6.00	2.10

In response to the new discovery, Mr Hugh Warner (Chairman) had the following to say: "Since completion of the PFS, our drilling programme has been focussed, primarily, on upgrading the mineral resource categories to feed into our pit optimisation studies, after which we plan to update our Ore Reserves. However, our exploration team has not lost sight of the fact that there is still much to learn about the size of the Arcadia lithium pegmatite and this new discovery confirms that conviction"

Figure 1- Relationship of Phase 5 RC Holes, current Resource Categories and Planned Pits

ARCADIA LITHIUM – Known Extent of Basal Pegmatite - October 2017

Figure 2

For further information, please contact:**Hugh Warner**

Prospect Resources
Executive Chairman
Ph: +61 413 621 652

Harry Greaves

Prospect Resources
Executive Director
Ph: +263 772 144 669

Competent Person's Statement

The information in this announcement that relates to Exploration Targets and Exploration Results, is based on information compiled by Mr Roger Tyler, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy and The South African Institute of Mining and Metallurgy. Mr Tyler is the Company's Senior Geologist. Mr Tyler has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Tyler consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to Mineral Resources is based on information compiled by or under the supervision of Ms Gayle Hanssen of Digital Mining Services, Harare Zimbabwe. Ms Hanssen is registered as Professional Scientist with the South African Council for Professional Natural Scientific Professions (SACNASP) which is a Recognised Professional Organisation (RPO). Ms Hanssen is employed by DMS and has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Mineral Resources. Ms Hanssen consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i><i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i>	<ul style="list-style-type: none">At the Arcadia Project, the majority of samples were percussion chips generated from a Smith Capital or Thor rig, using a double tube reverse circulation (RC) technique. Samples were collected from the cyclone and riffle split on site before bagging. The most recent phase (#5) which has delineated the Basal Pegmatite was drilled using a Super Rock 5000.3 x 3 kg samples were collected every meter in triplicate, one of which was sent for pulverizing and assaying, in addition to a smaller sample retained for reference and logging.For the diamond drill samples, core was marked up on site, and halved with a diamond saw, in a facility close to site. Half of the core (normally left side) was retained for reference purposes.Certified Reference Materials (CRMs) produced by AMIS of Johannesburg, blanks and field duplicates were inserted into each sample batch. (5% of total being CRMs, 5% blanks, 5% field duplicates and 5% laboratory duplicates). This was done by Zimlabs who undertook the sample preparation, as well as blank and CRM insertion, under instruction from Prospect Resources.The AMIS CRMs used were ; AMIS0338; 0.1682% Li, AMIS0339 ; 2.15% Li AMIS0340 ; 1.43% Li, AMIS0341 ; 0.4733% Li, AMIS0342 ; 0.1612% Li, AMIS0343 ; 0.7016% Li & AMIS0355 ; 0.7696% LiAll samples were taken in Company transport to Zimlabs laboratory in Harare, where they were pulverized to produce a 30g charge and then dispatched by courier to ALS Johannesburg. All samples were analysed by multi-element ICP (ME-MS61, following four acid dissolution. Overlimits on lithium analysed by LiOG63 method (four acid digestion with ICP or AAS finish),All the pulps from holes drilled within the planned new pit area have subsequently been re-submitted for XRD analysis at either ALS, SGS or FT Geolabs. XRD. Results from sixteen batches (1,129 samples) are available.
Drilling	<ul style="list-style-type: none"><i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air</i>	<ul style="list-style-type: none">Double tube, 5" Reverse Circulation. Two RC rigs were used. A trailer mounted

Criteria	JORC Code explanation	Commentary
techniques	<p><i>blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></p>	<p>Smith Capital double tube RC rig was used with a 25 bar (Ingersoll Rand) 2013 compressor. In addition, a Thor truck mounted rig was used, with a 50 bar Atlas Copco compressor.</p> <ul style="list-style-type: none"> 3m rods were used, and the hole air blasted to allow sample recovery via a cyclone every 1m. A total of 188 RC holes (15,145m), plus 9 pre-collars (1,490m) were drilled, and 9,318 m from 120 RC holes were used in this estimate. For diamond core drilling, two Atlas Copco CS 14 rigs were used. HQ core was drilled through the first 20 – 30m of broken ground. This section was then cased and drilling proceeded with NQ sized core. A total of 81 DD holes (8622m) were drilled, with 74 DD holes (7,454m) were used in the Mineral Resource estimate. In addition, 11 holes were pre collared by RC, with four of these being subsequently being tailed with core (1,490m) Four of these (556.m were used in the estimate) 25 dedicated metallurgical holes (HQ) were drilled (ACD017, 018, 022,031, 041, 045, 046, 047, 048, 05,055, 066, 068 – 071, and 073 -81) totaling 1,985m.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> RC chip samples were bagged directly from the cyclone, and immediately weighed; virtually all samples weighed more than 30kg, averaging 35kg. A calculated recovery of around of 85% was achieved. The sample was then riffle split to produce 3 subsamples (a primary, field duplicate and reference sample) of approximately 3kg each. Material seems largely homogenous, and no relationship has been detected between grain size and assayed grade. Results from the 41 lab duplicates generated from the milled core, in the Phase 3 samples show a correlation of over 99%, and an under read, bias of less than 10%, which is not considered material. The average core loss across the un-weathered portions of the phase 3 DD holes is 3.7%. The vast majority of this loss occurring in the first 20m of weathered ground. The core loss through the pegmatites is less than 2%. For the Phase 3 DD holes, the core loss through the un-weathered portions is 1.3% The overall average Li grade of the 2093 Phase 2,3 and 4 RC chip samples is 0.30% v 0.31% for the 1781 DD samples. As there is only a partial overlap in the RC and DD drilling 'grids', it is not possible at this stage to make a definitive statistical comparison, to determine if this is geological in origin or as a result

Criteria	JORC Code explanation	Commentary
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<p>of the drilling method.</p> <ul style="list-style-type: none"> A sample of the RC chips was washed and retained in a chip tray. Chip samples have been geologically logged at 1m intervals, with data recorded in spreadsheet format using standardized codes. Sample weight, moisture content, lithologies, texture, structure, induration, alteration, oxidation and mineralisation were recorded. Specific gravities (SGs) were measured at Zimlabs using the Archimedes method and at SGS laboratories in Harare, using a pycnometer. All drill core has been lithologically logged and had first pass batch geotech logging done (RQD) on site. At a nearby Company facility, detailed structural logging and field SG measurements were made, using the Archimedes (displacement in water) method. The SG determinations were made on a representative material of waste and mineralized pegmatites from every meter in each borehole. The work is undertaken according Prospect Resources' standard procedures and practices, which are in line with international best practice, and overseen by the CP. The CP considers that the level of detail and quality of the work is appropriate to support the current Mineral Resource estimation.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> RC samples were bagged straight from the cyclone. An average of 35kg of sample was produced per meter. The dry samples were split using a 3-stage riffle splitter, with three, 3kg samples being collected per 1m interval. Excess material was dumped in a landfill. For RC chip samples, field duplicates were produced every 20th sample. The 3kg samples were crushed and milled (90%, pass -75µm) at the Zimlabs Laboratory. Pulp duplicates, blanks and standard material (produced by AMIS) were inserted in identical packets to the samples, one per 20 normal samples for each of the blanks, standards and lab duplicates. This was done under the supervision of a qualified geologist or experienced geotechnician from Prospect Resources. DD Core was split in half with a diamond saw. Half was sampled for assay, respecting lithological boundaries up to a maximum sample length of a meter. The other half of core (normally left side) was retained for reference purposes.

Criteria	JORC Code explanation	Commentary
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> All samples were analysed by multi-element ICP (ME-MS61). Over limits (> on lithium analysed by LiOG63 method, after four acid dissolution. All assays were performed at ALS Vancouver. For QAQC a 10% tolerance on CRM & duplicate results was permitted. Of the 41 Phase 1 and 2 blank samples inserted, only one was deemed necessary for re-assay. Of the 53 CRMs assayed only three fell outside the acceptable range, and sent for re-assay. Out of 55 pulps produced from field duplicates, 15 fell outside acceptable limits. An investigation identified that the issue was Zimlabs duplicating the wrong sample. One of their staff had become used to duplicating the preceding sample, irrespective of what was requested by Prospect Resources staff. The affected samples were re-assayed and subsequent results reported were considered acceptable. Following the discovery of this issue with Zimlabs, a Prospect Resources technician now follows each batch through the lab, and supervises insertion of standards. For the Phase 3 results all assayed at ALS, there were very few issues. Of 84 CRMs submitted with the DD samples all returned values within acceptable limits for lithium. As per previous releases, the five samples of AMIS340, again under-read on Ta. This issue can be confidently linked to the dissolution methods used by both ALS (and Genalysis on their check samples) being unsuitable for total extraction of sample type. For the Phase 4 results, the 49 blank samples all returned acceptable results. Of the 44 CRMs, 5 of the samples, has variations from the theoretical values of between 10 and 15%, but these were not considered significant. All of the 30 laboratory duplicates returned acceptable results. Of the 44 field duplicates, eight of the samples returned a variation of greater than 10%, but five of the samples were very low grade and therefore not considered significant. Three of the samples failed again on re-assaying, and it was determined that this was likely due to the wrong samples being duplicated in the field. For the Phase 5 results received to date, the five blanks, five CRMs and five lab duplicates all returned results within acceptable limits. A mixing of one filed duplicate sample has evidently been made, and this is being re-assayed. The conclusion is that ALS accuracy is considered good and, Zimlabs sample preparation procedures were acceptable.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> Two batches of Round Robin checks (72 samples) have been undertaken at Zimlabs in Harare, (which have returned an 85% correlation). Additional check samples were analysed for Li and Ta, satisfactorily at Genalysis - Intertek in Perth, Australia as Round Robin checks. A third batch is currently being analysed by Genalysis, after being delayed in customs. Prospect Resources' Chief Geologist was on site during most of the drilling and sample pre-preparation. The significant intersections of Phases 1 – 4 were also shown to Zimbabwe Geological Survey staff and checked by an MSA Geologist CP (Michael Cronwright). Resource CP Gayle Hanssen has observed all Phases 5. All hard copies of data are retained at the Prospect Resource Exploration offices. All electronic data resides in Excel™ format on the office desktop, with back-ups retained on hard-drives in a safe, and in an Access™ database in a data cloud offsite. Four Phase 1 DD holes from the current campaign were designed to twin historically drilled holes from the 1970's. No logging or assays are available from this old data. In addition RC hole ACR167 was drilled as a twin of DD hole; ACD050. In comparison; <ul style="list-style-type: none"> ACR167: Mean grade 1.51% Li₂O, Main Pegmatite 1.58% over 5m. Lower Main Pegmatite 1.73% over 10m. ACD050: Mean grade 1.47% Li₂O, Main Pegmatite 1.46% over 4.4m. Lower Main Pegmatite 1.65% over 12m. Logging and assay data captured electronically on Excel™ spreadsheet, and subsequently imported into an Access™ database. All assay results reported as Li ppm and over limits (>5,000ppm) as %, adjusted to the same units and expressed as Li₂O %. Similarly, Ta assays are reported in ppm, but expressed as Ta₂O₅. Fe₂O₃ assays were reported in %.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> All drill holes were surveyed completed with down-hole survey tool using an Azimuth Point System (APS) Single Shot survey method down-hole instrument at a minimum of every 30m and measured relative to magnetic North. These measurements have been converted from magnetic to Arc1950 UTM Zone 36

Criteria	JORC Code explanation	Commentary
		<p>South values. No significant hole deviation is evident in plan or section.</p> <ul style="list-style-type: none"> • All collar positions have been surveyed using a High Target DGPS system, from Fundira Surveys. The topography in the greater project area was surveyed to 30cm accuracy using a Leica 1600 DGPS. Permanent survey reference beacons have been erected on site. • All surveys were done in the WGS84 datum on grid UTM 36S, and subsequently converted to ARC1950 datum.
Data spacing and distribution	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> • <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> • Phase 1 drill holes were drilled at an average of 50m intervals along strike and down dip of the pegmatites. This was sufficient to establish confidence in geological and grade continuity and appropriate for the Mineral Resource classification applied, • The approximate grid for along strike and down dip drilling was extended to approaching 100m for the subsequent drilling phases.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> • <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> • Mineralised structures are shallow dipping (10° northwest) pegmatites hosted within meta-basalts and drilling was planned to intersect these structures perpendicularly (drilled at -80 to the southeast) • Though the target pegmatites can show considerable mineralogical and to a lesser extent grade variation, the geology is relatively simple.
Sample security	<ul style="list-style-type: none"> • <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> • RC and core samples were placed in sealed bags to prevent movement and mixing. Minimal preparation was done on site. Samples were transported in company vehicles accompanied by a senior technician to the pre-preparation laboratory (Zimlabs)
Audits or reviews	<ul style="list-style-type: none"> • <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> • The Resource CP Ms Gayle Hanssen is continually auditing sampling and logging practices.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> Arcadia V, Arcadia H, Arcadia I, Arcadia L, Arcadia 2V, Arcadia Tr and Arcadia L claims, held by Examix Investments (Pvt) Limited, which is 70% owned by Prospect Resources and 30% by local partners. No environmental or land title issues or impediments. EIA certificate of approval granted by the Environmental Management Agency, to cover all of the company's exploration activities. Rural farmland – fallow, effectively defunct commercial farm.
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Two rounds of historical drilling were done. Three EXT holes were drilled in 1969 with support from the Geological Survey of Zimbabwe, at the site of the historic pit. These logs are available, and the lithologies observed are consistent with that seen by Prospect Resources' drilling. The sites of at least 10 previously drilled NQ sized boreholes have also been identified in the field. The detailed records of this programme have been lost. But the work done in the late 1970's by Rand Mines, was recorded by the Geological Survey in their 1989 Harare bulletin, where an estimate of 18Mt is recorded.
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The deposit comprises a number of pegmatites hosted in meta-basalts of the Arcturus Formation within the Harare Greenstone Belt. The pegmatites belong to the Petalite subclass of the Rare-Element pegmatite deposit class and belong to the LCT pegmatite family. The pegmatites are poorly to moderately zoned (but not symmetrically or asymmetrically zoned and have no quartz core). The main lithium bearing minerals are dominantly petalite and spodumene, with sub-ordinate eucryptite, bikiataite, and minor lepidolite. In addition, disseminated tantalite is present. Gangue minerals are quartz, alkali feldspars and muscovite. The pegmatites strike 045° and dip at 10° to the northwest.
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in</i> 	<ul style="list-style-type: none"> See Appendix I

Criteria	JORC Code explanation	Commentary
	<p><i>meters) of the drill hole collar</i></p> <ul style="list-style-type: none"> ○ <i>dip and azimuth of the hole</i> ○ <i>down hole length and interception depth</i> ○ <i>hole length.</i> <ul style="list-style-type: none"> ● <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	
Data aggregation methods	<ul style="list-style-type: none"> ● <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> ● <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> ● <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> ● Borehole intersections were reported using downhole length weighted averaging methods. No maximum or minimum grade truncations were used. The mineralisation is constrained to within the pegmatites. ● For this Mineral Resource estimate, two estimates were made, one using a cut off grade of the statistically determined 0.2% Li₂O, and a second using a more realistic mining cut off, of 1% Li₂O.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> ● <i>These relationships are particularly important in the reporting of Exploration Results.</i> ● <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> ● <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> ● All drill holes were drilled with an azimuth of 135°. The dip of all the holes is -80°, planned to intersect the pegmatites perpendicularly. ● Virtually all holes intersected the pegmatites as planned, though the pegmatites do bifurcate and vary in thickness. There are remarkably little structural complications in the area. A series of northeast – southwest striking faults cut the ore body, but with little apparent displacement. ● The NNE trending Mashonganyika fault zone which forms the river valley to the east of the current planned pit, has resulted in blocks of Main Pegmatite being down faulted and preserved from erosion. Detailed analysis of the multi-element geochemistry is underway, but it appears that this fault zone has accentuated surficial geochemical leaching of certain of the elements; including lithium.
Diagrams	<ul style="list-style-type: none"> ● <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of</i> 	<ul style="list-style-type: none"> ● Maps and cross sections are attached in the body of the report

Criteria	JORC Code explanation	Commentary
	<i>drill hole collar locations and appropriate sectional views.</i>	
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> The Company states that all results have been reported and comply with balanced reporting.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> Channel sampling also carried out at the adjacent dormant pit, previously mined in the 1970s. Continuous 1m samples were channel sampled and hand sampled along cut lines, every 2m on the pit face. Approximately 3kg samples were collected, and assayed at ALS after crushing and milling at Zimlabs. Assays were incorporated into the MRE. Geological mapping was undertaken down-dip and along strike of the pit and has been incorporated into the current MRE. Soil sampling orientation lines have produced lithium geochemical anomalies that coincide with sub-outcropping projections of the pegmatites.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> The planned Phase 6 drilling will involve drilling approximately 25 x 130m on the western edge of the planned Main Pit. This is to upgrade all of the Basal Pegmatite from the inferred resource to indicated, so that it can be converted to reserves.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	<ul style="list-style-type: none"> Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	<ul style="list-style-type: none"> N/a
Site visits	<ul style="list-style-type: none"> Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	<ul style="list-style-type: none">
Geological interpretation	<ul style="list-style-type: none"> Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource 	<ul style="list-style-type: none">

Criteria	JORC Code explanation	Commentary
	<p><i>estimation.</i></p> <ul style="list-style-type: none"> • <i>The use of geology in guiding and controlling Mineral Resource estimation.</i> • <i>The factors affecting continuity both of grade and geology.</i> 	
<i>Dimensions</i>	<ul style="list-style-type: none"> • <i>The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.</i> 	<ul style="list-style-type: none"> •
<i>Estimation and modelling techniques</i>	<ul style="list-style-type: none"> • <i>The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.</i> • <i>The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.</i> • <i>The assumptions made regarding recovery of by-products.</i> • <i>Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).</i> • <i>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</i> • <i>Any assumptions behind modelling of selective mining units.</i> • <i>Any assumptions about correlation between variables.</i> • <i>Description of how the geological interpretation was used to control the resource estimates.</i> • <i>Discussion of basis for using or not using grade cutting or capping.</i> • <i>The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.</i> 	<ul style="list-style-type: none"> •
<i>Moisture</i>	<ul style="list-style-type: none"> • <i>Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.</i> 	<ul style="list-style-type: none"> •
<i>Cut-off parameters</i>	<ul style="list-style-type: none"> • <i>The basis of the adopted cut-off grade(s) or quality parameters applied.</i> 	<ul style="list-style-type: none"> •
<i>Mining factors or</i>	<ul style="list-style-type: none"> • <i>Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining</i> 	<ul style="list-style-type: none"> •

Criteria	JORC Code explanation	Commentary
assumptions	reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	
Metallurgical factors or assumptions	<ul style="list-style-type: none"> The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	
Environmental factors or assumptions	<ul style="list-style-type: none"> Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	
Bulk density	<ul style="list-style-type: none"> Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	
Classification	<ul style="list-style-type: none"> The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, 	

Criteria	JORC Code explanation	Commentary
	<p><i>quantity and distribution of the data).</i></p> <ul style="list-style-type: none"> • <i>Whether the result appropriately reflects the Competent Person's view of the deposit.</i> 	
Audits or reviews	<ul style="list-style-type: none"> • <i>The results of any audits or reviews of Mineral Resource estimates.</i> 	<ul style="list-style-type: none"> •
Discussion of relative accuracy/confidence	<ul style="list-style-type: none"> • <i>Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</i> • <i>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</i> • <i>These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</i> 	<ul style="list-style-type: none"> •

APPENDIX – SUMMARY OF DRILL HOLES USED IN MINERAL RESOURCE ESTIMATE

BHID	Eastings ARC50	Northings ARC50	Elevation	Azimuth	Dip	Depth
ACD001	331,375.37	8,034,084.52	1,406.87	145	-80	67.10
ACD002	331,344.43	8,034,059.89	1,408.65	148	-79	104.70
ACD003	331,331.21	8,034,127.59	1,404.69	144	-80	86.70
ACD004	331,336.18	8,034,179.68	1,399.66	135	-80	80.70
ACD005	331,404.84	8,034,110.33	1,401.06	135	-80	71.60
ACD006	331,387.09	8,034,224.41	1,386.85	135	-80	77.70
ACD007	331,292.17	8,034,033.50	1,402.76	135	-80	74.32
ACD008	331,243.12	8,034,063.75	1,393.43	135	-79	53.60
ACD009	331,201.73	8,033,968.64	1,405.58	142	-80	62.70
ACD010	331,109.41	8,033,902.90	1,398.59	135	-80	67.35
ACD011	331,220.44	8,033,907.17	1,405.97	135	-80	32.70
ACD012	331,100.31	8,033,851.10	1,397.82	135	-80	71.96
ACD013	331,075.76	8,033,936.72	1,391.31	145	-79	60.70
ACD014	331,291.75	8,034,171.09	1,404.12	135	-80	29.75
ACD014B	331,288.54	8,034,174.19	1,404.36	150	-78	86.70
ACD015	331,134.81	8,033,976.09	1,398.27	158	-79	58.00
ACD016	331,464.00	8,034,145.40	1,378.00	135	-80	86.70
Phase 2 RC						
ACR001	331,539.78	8,034,132.39	1,366.49	130	-79	51.00
ACR002	331,503.95	8,034,179.73	1,361.24	151	-81	52.00
ACR003	331,453.30	8,034,256.34	1,373.19	144	-80	76.00
ACR004	331,610.58	8,034,203.15	1,343.05	147	-80	37.00
ACR005	331,589.70	8,034,234.81	1,342.52	144	-80	33.00
ACR006	331,535.33	8,034,315.34	1,343.68	148	-80	56.00
ACR007	331,708.76	8,034,254.73	1,327.65	139	-81	43.00
ACR008	331,671.74	8,034,296.39	1,330.92	148	-80	50.00
ACR009	331,612.23	8,034,370.25	1,327.21	155	-79	55.00
ACR010	331,471.00	8,034,399.00	1,346.00	156	-80	70.00
ACR011	331,685.21	8,034,448.12	1,318.22	156	-80	76.00
ACR012	331,639.00	8,034,510.44	1,316.34	146	-80	81.00
ACR013	331,779.82	8,034,489.41	1,312.28	135	-79	81.00
ACR014	331,781.48	8,034,309.88	1,319.29	150	-78	82.00
ACR015	331,751.79	8,034,346.86	1,321.29	135	-80	68.00
ACR016	331,554.34	8,034,449.37	1,325.61	158	-79	76.00
ACR017	331,500.25	8,034,537.82	1,323.51	135	-80	53.00
ACR018	331,417.16	8,034,475.73	1,332.79	135	-80	82.00
ACR019	331,345.31	8,034,424.79	1,343.41	128	-80	77.00
ACR020	331,398.64	8,034,322.36	1,359.26	127	-77	69.00
ACR021	331,313.46	8,034,289.43	1,381.18	132	-80	85.00
ACR023	330,956.26	8,033,777.46	1,403.47	129	-81	89.00
ACR024	330,881.57	8,033,718.84	1,417.00	150	-77	55.00

BHID	Eastings ARC50	Northings ARC50	Elevation	Azimuth	Dip	Depth
ACR025	330,795.46	8,033,657.62	1,420.24	130	-79	55.00
ACR026	330,705.33	8,034,116.03	1,390.68	135	-77	60.00
ACR027	330,652.92	8,034,195.07	1,391.80	144	-75	74.00
ACR028	330,740.59	8,034,249.39	1,394.10	131	-59	70.00
ACR029	330,815.74	8,034,313.91	1,380.42	130	-79	70.00
ACR030	330,621.81	8,034,059.22	1,408.56	141	-80	53.00
ACR031	330,818.97	8,033,796.31	1,411.68	131	-78	61.00
ACR032	331,671.13	8,034,114.18	1,336.15	135	-79	24.00
Phase 3 (DD)						
ACD017	331,337.01	8,034,200.90	1,398.38	127	-80	83.85
ACD018	331,644.87	8,034,412.88	1,322.11	125	-80	74.75
ACD019	331,827.50	8,034,408.51	1,314.25	124	-80	77.70
ACD020	331,573.20	8,034,593.51	1,316.06	133	-79	139.40
ACD021	332,023.14	8,034,485.85	1,303.85	130	-80	65.60
ACD022	331,511.40	8,034,419.82	1,334.54	132	-79.5	74.75
ACD023	331,719.05	8,034,567.88	1,310.43	137	-78	182.70
ACD024	332,000.03	8,034,344.41	1,306.64	137	-80	101.60
ACD025	331,825.32	8,034,627.66	1,305.46	133	-79.5	197.70
ACD026	331,863.90	8,034,275.86	1,315.11	139	-78.6	89.70
ACD027	331,883.06	8,034,692.43	1,303.98	136	-79.2	191.00
ACD028	331,857.12	8,034,551.29	1,307.64	135	-79.4	164.70
ACD029	331,460.90	8,034,511.98	1,327.78	118.6	-79.13	125.70
ACD030	331,638.77	8,034,652.11	1,310.90	132.3	-79.1	205.25
ACD031	331,583.86	8,034,412.21	1,326.37	133.5	-79.5	77.75
ACD032	331,519.88	8,034,676.15	1,315.39	134.9	-79.2	188.60
ACD033	331,363.44	8,034,566.64	1,325.95	133.9	-79.2	137.60
ACD034	331,962.93	8,034,723.46	1,302.06	128.9	-80.2	188.70
ACD035	331,290.29	8,034,512.25	1,331.84	127.8	-79.3	104.60
ACD036	332,042.88	8,034,810.39	1,298.79	131.2	-81.4	191.60
ACD037	332,114.47	8,034,870.89	1,296.15	125.2	-78.3	164.60
ACD038	331,207.90	8,034,444.88	1,343.14	132.9	-78.1	113.60
ACD039	332,001.12	8,034,931.82	1,303.99	132.7	-78.2	86.40
ACD039B	332,098.53	8,034,733.24	1,298.53	132.7	-78.2	200.60
ACD041	331,441.74	8,034,613.53	1,320.77	126.4	-80.1	141.25
ACD040	332,099.00	8,034,730.00	1,305.00	134.9	-79.9	77.33
ACD042	332,182.00	8,034,948.00	1,305.00	138.2	-79.5	170.70
ACD043	332,170.00	8,035,053.00	1,290.00	149.3	-79.9	176.70
ACD044	332,088.00	8,034,993.00	1,295.00	134	-77.4	203.60
ACD045	331,708.00	8,034,500.00	1,316.00	135.7	-79.6	104.85
ACD046	331,648.00	8,034,581.00	1,316.00	129.6	-80.4	116.85
ACD048	331,845.00	8,034,478.00	1,311.00	127.6	-79.2	113.85
ACD049	331,788.00	8,034,560.00	1,310.00	124.5	-79.6	107.85

BHID	Eastings ARC50	Northings ARC50	Elevation	Azimuth	Dip	Depth
ACD050	331,240.00	8,034,228.00	1,388.00	141.1	-79.4	80.60
ACD051	331,597.00	8,034,483.00	1,318.00	130.4	-79.3	89.95
ACD052	331,768.00	8,034,420.00	1,321.00	137.8	-80.1	80.60
ACD053	331,160.00	8,034,172.00	1,382.00	130.8	-79.7	83.60
ACD054	331,297.00	8,034,717.00	1,328.00	146.1	-78.8	68.25
ACD055	331,412.00	8,034,414.00	1,349.00	124.4	-78.9	74.85
ACD056	331,182.00	8,034,314.00	1,361.00	131.8	-79.3	104.70
ACD057	331,068.00	8,034,464.00	1,343.00	136.1	-79.4	95.70
ACD058	331,684.00	8,034,361.00	1,329.00	137	-78.9	75.10
ACD059	331,099.00	8,034,257.00	1,369.00	129.6	-79.6	80.70
ACD060	330,982.00	8,034,412.00	1,347.00	139.5	-79.3	89.70
ACD061	331,018.00	8,034,198.00	1,355.00	131.6	-79.6	131.70
ACD062	330,900.00	8,034,373.00	1,361.00	143.7	-79.2	89.70
ACD063	330,939.00	8,034,137.00	1,358.00	135.5	-80	131.60
ACD064	332,019.00	8,034,669.00	1,305.00	138	-78.4	149.60
ACD065	331,674.00	8,034,789.00	1,312.00	141.5	-77.5	203.70
Phase 3(RC)						
ACR034	330,416.00	8,035,708.00	1,393.00	159	-74.8	80.00
ACR035	330,437.00	8,035,660.00	1,393.00	248	-87.4	100.00
ACR036	330,655.00	8,035,698.00	1,401.00	337	-74.5	90.00
ACR037	330,473.00	8,035,611.00	1,392.00	343	-67.8	82.00
ACR038	330,521.00	8,035,643.00	1,397.00	335	-71.7	72.00
ACR039	330,381.00	8,035,607.00	1,393.00	340	-70	90.00
ACR040	330,580.00	8,035,700.00	1,398.00	340	-70	78.00
ACR041	330,653.00	8,035,736.00	1,398.00	353	-74.7	64.00
ACR042	330,707.00	8,035,776.00	1,394.00	334	-68.7	60.00
ACR043	331,760.18	8,034,172.79	1,322.82	131	-80.8	75.00
ACR044	331,457.41	8,034,025.65	1,376.89	137	-82.2	82.00
ACR045	330,853.00	8,035,804.00	1,393.00	344	-72	65.00
ACR046	331,922.41	8,034,282.84	1,311.24	137	-80.3	83.00
ACR047	331,819.83	8,034,096.44	1,319.15	140	-80.8	81.00
ACR048	331,840.66	8,034,227.19	1,317.12	134	-80.7	77.00
ACR049	331,724.19	8,034,023.21	1,326.88	129	-79.5	79.00
ACR050	331,759.53	8,033,900.35	1,322.79	130	-80.6	75.00
ACR051	330,911.08	8,033,869.20	1,400.10	155	-81.3	80.00
ACR052	331,869.71	8,033,999.45	1,316.20	140	-80.1	67.00
ACR053	331,901.85	8,034,147.66	1,314.46	144	-75	75.00
ACR054	330,831.09	8,033,952.91	1,384.08	145	-79.3	73.00
ACR055	331,982.73	8,034,208.03	1,309.51	142	-80.7	88.00
ACR056	331,950.69	8,034,425.78	1,308.07	131	-81	75.00
ACR057	332,288.00	8,034,881.00	1,302.00	150	-60	57.00
ACR058	332,244.00	8,035,050.00	1,292.00	150	-60	74.00

BHID	Eastings ARC50	Northings ARC50	Elevation	Azimuth	Dip	Depth
ACR059	332,650.00	8,034,950.00	1,307.00	180	-60	50.00
ACR060	332,650.00	8,035,000.00	1,300.00	180	-60	58.00
ACR061	332,650.00	8,035,050.00	1,302.00	180	-60	76.00
ACR062	332,650.00	8,035,146.00	1,299.00	180	-60	80.00
ACR063	332,650.00	8,035,247.00	1,296.00	180	-60	125.00
ACR064	332,750.00	8,035,000.00	1,305.00	180	-60	63.00
ACR066	332,850.00	8,035,001.00	1,300.00	180	-60	74.00
ACR067	332,850.00	8,035,050.00	1,302.00	180	-60	84.00
ACR068	332,950.00	8,035,000.00	1,295.00	180	-60	85.00
ACR069	332,950.00	8,035,050.00	1,296.00	180	-60	93.00
ACR070	333,050.00	8,035,000.00	1,295.00	180	-60	92.00
ACR071	333,050.00	8,035,050.00	1,297.00	180	-60	92.00
ACR072	333,150.00	8,035,000.00	1,292.00	180	-60	108.00
ACR073	332,950.00	8,034,900.00	1,296.00	174	-62	70.00
ACR074	332,950.00	8,034,800.00	1,309.00	180	-59	60.00
ACR075	333,150.00	8,034,700.00	1,287.00	178	-59	77.00
ACR076	333,238.00	8,034,700.00	1,286.00	169	-63	73.00
ACR077	333,150.00	8,034,800.00	1,283.00	175	-66	75.00
ACR078	333,150.00	8,034,600.00	1,291.00	177	-61	75.00
ACR079	332,550.00	8,035,146.00	1,299.00	180	-63	79.00
ACR080	332,452.00	8,035,150.00	1,294.00	182	-61	80.00
ACR081	332,350.00	8,035,146.00	1,301.00	173	-62	80.00

Phase 3 Tails

ACDT01	331,228.39	8,034,595.14	1,329.10	130.8	-80.7	140.50
ACDT02	331,314.86	8,034,640.81	1,324.39	154.1	-79.9	134.60
ACDT04	331,598.00	8,034,727.00	1,317.00	132.1	-79.8	170.60
ACDT07	331,147.60	8,034,525.55	1,334.51	135	-80	110.60

Phase 3DD

ACD059	331,099.00	8,034,257.00	1,369.00	129.6	-79.6	80.70
ACD060	330,982.00	8,034,412.00	1,347.00	139.5	-79.3	89.70
ACD061	331,018.00	8,034,198.00	1,355.00	131.6	-79.6	131.70
ACD062	330,900.00	8,034,373.00	1,361.00	143.7	-79.2	89.70
ACD063	330,939.00	8,034,137.00	1,358.00	135.5	-80	131.60
ACD064	332,019.00	8,034,669.00	1,305.00	138	-78.4	149.60
ACD065	331,674.00	8,034,789.00	1,312.00	141.5	-77.5	203.70
ACD066	331,858.00	8,034,367.00	1,316.00	128.5	-79.6	67.95
ACD067	331,733.00	8,034,713.00	1,314.00	136.1	-77.6	173.70
ACD068	331,262.00	8,034,547.00	1,333.00	146	-79.3	101.75
ACD069	331,568.00	8,034,524.00	1,329.00	139.4	-79.7	101.85
ACD070	331,391.00	8,034,525.00	1,333.00	145.4	-79.5	101.85
ACD071	331,191.00	8,034,557.00	1,332.00	135	-79.6	113.85
ACD072	331,808.00	8,034,773.00	1,311.00	130.9	-79.7	143.70

BHID	Eastings ARC50	Northings ARC50	Elevation	Azimuth	Dip	Depth
ACD073	331,495.00	8,034,535.00	1,325.00	133.1	-79.3	108.12
ACD074	331,358.00	8,034,069.00	1,410.00	132.1	-79.7	41.85
ACD075	331,392.00	8,034,090.00	1,409.00	129.6	79.1	44.85
ACD076	331,322.00	8,034,053.00	1,413.00	128.9	80.5	29.85
ACD077	331,349.00	8,034,102.00	1,403.00	130.1	80.5	41.85
ACD078	331,304.00	8,034,073.00	1,409.00	136.1	79.6	35.75
ACD079	331,293.00	8,034,324.00	1,374.00	131.7	79.3	44.85
ACD080	331,244.00	8,034,398.00	1,349.00	137.8	79.5	44.85
ACD081	331,379.00	8,034,119.00	1,402.00	140.6	79.9	44.85
Phase 4 (RC)						
ACR074	332,950.00	8,034,800.00	1,309.00	180	-59	60.00
ACR075	333,150.00	8,034,700.00	1,287.00	178	-59	77.00
ACR076	333,238.00	8,034,700.00	1,286.00	169	-63	73.00
ACR077	333,150.00	8,034,800.00	1,283.00	175	-66	75.00
ACR078	333,150.00	8,034,600.00	1,291.00	177	-61	75.00
ACR079	332,550.00	8,035,146.00	1,299.00	180	-63	79.00
ACR080	332,452.00	8,035,150.00	1,294.00	182	-61	80.00
ACR081	332,350.00	8,035,146.00	1,301.00	173	-62	80.00
ACR082	330,980.00	8,034,699.00	1,333.00	133	-81	50.00
ACR083	330,921.00	8,034,780.00	1,337.00	143	-80	44.00
ACR084	331,134.00	8,034,915.00	1,333.00	130	-81	30.00
ACR085	331,110.00	8,034,758.00	1,326.00	127	-81	50.00
ACR086	331,054.00	8,034,840.00	1,335.00	135	-80	70.00
ACR087	330,998.00	8,034,920.00	1,344.00	143	-84	51.00
ACR088	331,210.00	8,034,810.00	1,331.00	136	-81	40.00
ACR089	330,878.00	8,034,647.00	1,338.00	141	-81	48.00
ACR090	330,937.00	8,034,565.00	1,343.00	130	-80	50.00
ACR091	331,638.00	8,033,946.00	1,332.00	135	-80	50.00
ACR091B	331,634.00	8,033,947.00	1,332.00	114	-82	85.00
ACR092	331,528.00	8,033,891.00	1,340.00	134	-80	75.00
ACR093	331,422.00	8,033,823.00	1,360.00	140	-82	76.00
ACR094	331,370.00	8,033,725.00	1,360.00	150	-79	84.00
ACR095	331,213.00	8,033,634.00	1,372.00	135	-82	72.00
ACR096	331,511.00	8,033,634.00	1,348.00	135	-80	36.00
ACR097	330,469.00	8,033,552.00	1,442.00	138	-79	76.00
ACR098	330,419.00	8,033,447.00	1,469.00	153	-80	73.00
ACR099	330,356.00	8,033,362.00	1,443.00	107	-78	80.00
ACR100	330,581.00	8,033,745.00	1,405.00	135	-80	76.00
ACR101	330,365.00	8,033,739.00	1,398.00	135	-80	72.00
ACR102	331,575.00	8,033,759.00	1,339.00	133	-84	95.00
ACR103	331,670.00	8,033,820.00	1,330.00	141	-82	93.00
ACR123	331,127.00	8,034,386.00	1,355.00	140	-80	90.00

BHID	Eastings ARC50	Northings ARC50	Elevation	Azimuth	Dip	Depth
ACR126	331,048.00	8,034,327.00	1,347.00	144	-81	90.00
ACR128	330,955.00	8,034,265.00	1,361.00	137	-80	90.00
ACR134	331,775.00	8,034,809.00	1,455.00	128	-81	130.00
ACR136	330,880.00	8,034,207.00	1,318.00	141	-81	90.00
ACR139	331,030.00	8,033,704.00	1,387.00	147	-83	70.00
ACR140	330,758.00	8,033,883.00	1,407.00	140	-82	80.00
ACR142	330,952.00	8,033,644.00	1,398.00	147	-81	50.00
ACR145	331,109.00	8,033,644.00	1,381.00	130	-81	100.00
ACR146	331,110.00	8,033,772.00	1,379.00	146	-82	85.00
ACR147	331,199.00	8,033,824.00	1,388.00	144	-83	100.00
ACR148	331,291.00	8,033,864.00	1,384.00	128	-80	103.00
ACR149	331,499.00	8,033,794.00	1,347.00	138	-79	79.00
ACR152	331,177.00	8,033,722.00	1,387.00	135	-80	109.00
ACR153	331,269.00	8,033,768.00	1,384.00	140	-82	105.00
ACR154	331,349.00	8,033,852.00	1,370.00	137	-80	105.00
ACR155	331,377.00	8,033,946.00	1,399.00	136.3	-81	102.00
ACR156	331,162.00	8,033,601.00	1,377.00	142	-81	82.00
ACR157	331,033.00	8,033,855.00	1,390.00	137	-81	110.00

Phase 5 RC

BHID	Eastings ARC50	Northings ARC50	Elevation	Azimuth	Dip	Depth
ACR168	330,860	8,034,086	1,372	126	-79	110.00
ACR169	330,772	8,034,020	1,382	142	-76	151.00
ACR170	330,689	8,033,956	1,403	134	-79	160.00
ACR171	331,120	8,034,130	1,377	123	-82	61.00
ACR172	331,053	8,034,079	1,371	123	-80	113.00
ACR173	332,551	8,035,054	1,305	179	-60	99.00
ACR174	330,993	8,034,036	1,370	134	-81	114.00
ACR175	332,451	8,035,072	1,305	180	-60	97.00
ACR176	330,939	8,034,009	1,363	135	-80	120.00
ACR177	332,359	8,035,050	1,301	180	-60	90.00
ACR178	332,453	8,035,250	1,296	180	-60	121.00
ACR179	330,814	8,034,150	1,380	135	-80	160.00
ACR182	332,247	8,035,150	1,289	180	-60	109.00
ACR183	331,225	8,034,135	1,395	135	-80	131.00
ACR184	331,152	8,034,065	1,383	135	-80	126.00
ACR185	331,081	8,034,024	1,386	135	-80	130.00
ACR186	331,011	8,033,940	1,384	135	-80	118.00
ACR187	331,197	8,034,041	1,389	135	-80	140.00
ACR188	331,096	8,033,967	1,397	135	-80	121.00