

ASX Announcement | 04 November 2025

COPIAPO WAREHOUSE SECURED MET SAMPLES PREPARED AND READY TO BE SHIPPED

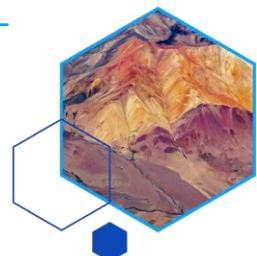
Flagship assumes Anglo Warehouse lease with 32,827m of drilling across 148 drillholes – Prepares 690kg Metallurgical samples for testing by Xinhai – Initiates discussions with Copiapo based drilling companies

Flagship Minerals Limited (ASX:FLG) (“Flagship” or “the Company”) is pleased to advise that it has assumed control of the Anglo warehouse containing all of the physical exploration data related to the Pantanillo Gold Project collected by Anglo during its ownership. Further, Flagship has prepared a ~690kg metallurgical sample comprising separate oxide, mixed and sulphide components which is ready for shipment to Xinhai’s metallurgical testing facilities. Flagship has also started discussions with drilling contractors in preparation for metallurgical drilling post updating the current 1.05Moz Au foreign estimate (QFE^{1,2}, NI 43-101) to a Mineral Resource Estimate in accordance with the JORC Code 2012, and extensional drilling in anticipation of an additional MRE upgrade during 2026.

KEY POINTS

- Flagship fast-tracking conversion of **current 1.05Moz Au foreign estimate (QFE, NI 43-101)** to a Mineral Resource Estimate (MRE) in accordance with the JORC Code 2012.
- Flagship **assumes control of the Anglo warehouse** containing all of the physical exploration data related to the Pantanillo Gold Project collected by Anglo during its ownership.
- Flagship **compiles 690kg metallurgical sample from diamond drill core** comprising separate oxide, mixed and sulphide components for testing by Xinhai.
- Flagship **begins discussions with drilling contractors in preparation for post MRE metallurgical drilling and MRE extensional drilling** during 2026.

¹ The qualifying foreign estimates (QFE) are not reported in accordance with the JORC Code (2012). The Competent Person has not done sufficient work to classify the qualifying foreign estimates in accordance with the JORC Code (2012) and it is uncertain that following evaluation and/or further exploration work that the foreign estimates will be able to be reported as Mineral Resources or Ore Reserves in accordance with the JORC Code. The QFE was first reported in ASX announcement dated 14 April 2025 and titled “*Pantanillo Gold Project - Advanced Large Scale Oxide Gold Project - Maricunga Gold Belt, Chile - Binding Option Agreement to Purchase 100%*”.


² The Company is not in possession of any new information or data relating to the QFE that materially impacts on the reliability of the QFE or Flagship’s ability to verify the QFE as Mineral Resources or Ore Reserves in accordance with Appendix 5 (JORC Code). Flagship also confirms that the supporting information provided in the initial market announcement in accordance with Listing Rule 5.12 continues to apply and has not materially changed.

Flagship Minerals Limited

36 Robinson Road #20-01 City House Singapore 068877

Level M, 388 George Street, Sydney, NSW, 2000

ASX: flagshipminerals.com

Flagship Minerals' Managing Director, Paul Lock, commented:

“We are very pleased with our progress at Pantanillo. In assuming control of the Anglo warehouse last Saturday the 1st of November, we have managed to secure a well located, secure and organised property and avoid the cost and risk of shifting ~100 tonnes of drill core and other exploration and testing samples.

“We have already prepared a ~690kg metallurgical sample comprising similarly sized oxide, mixed and sulphide samples for shipment to and testing at Xinhai’s metallurgical facilities. Xinhai’s Chilean representative will be handling logistics from Flagship’s warehouse door.

“During the last week of October Flagship provided one of Copiapo’s leading drill contractors a field visit to Pantanillo as part of their assessment of accessibility and so on. The visit went well and access from Copiapo to all historical drill pads was completed with ease. This was an initial step to securing a drilling contractor who will undertake drilling post Flagship’s delivery of an MRE in accordance with the JORC Code 2012. This drilling will focus on Flagship’s metallurgical requirements and extensional drilling in anticipation of an MRE upgrade later in 2026.

“Overall the progress at Pantanillo on ALL fronts is strong and gaining momentum. ”

BACKGROUND

As previously advised Flagship has elected to initially concentrate its efforts on the drillhole data associated with Pantanillo Norte and the 1.05Moz of Au @ 0.69g/t Au foreign estimate (QFE, NI 43-101) in order to expedite the preparation of a JORC (2012) Mineral Resource Estimate for the project. This process formally began with the acquisition of the Anglo exploration dataset announced in August this year³. Aside of the comprehensive electronic data contained in the dataset, the drillhole dataset contains 183 holes for a total of 32,827m, including 13,949m of diamond drill core from 48 holes drilled. Flagship is using this data and other supporting information to prepare a JORC (2012) Mineral Resource Estimate (MRE) for the Pantanillo Norte deposit. Flagship is also preparing for an MRE upgrade in 2026 along with metallurgical testwork and preliminary planning and engineering.

GENERAL COMMENTARY**Flagship assumes control of the Anglo warehouse containing the recently acquired physical project data**

Flagship has secured and accessed a warehouse on the outskirts of Copiapo City, a major mining hub in northern Chile. The warehouse was formally leased by Anglo American with Flagship taking over this lease as of the 1st of November, 2025.

The warehouse contains an extensive amount of exploration data generated by previous explorers and has been stored by Anglo for more than 25 years. The contents of the warehouse include nearly all the diamond drill core completed on the property which totalled 13,949m, as well as chip trays from most of the RC holes completed on the property which totalled 18,878m. There are also extensive laboratory assay pulps and coarse crush rejects

³ See Flagships ASX Release dated 27 August, 2025, and titled “Pantanillo Gold Project - Anglo Exploration Dataset Secured”.

from the assayed drill samples. All of this material is now available to Flagship for additional technical work and re-analysis (see Figure 1).

Figure 1: Flagship warehouse containing the recently acquired physical data for the Pantanillo Gold Project

690kg Metallurgical testwork samples prepared and ready for shipment to Xinhai's testing facilities

Metallurgical test work is a core component of Flagship's work plan to advance the Pantanillo project towards production.

A review of testwork conducted by previous explorers confirms that high gold recoveries were achieved through cyanidation of crushed material. This includes gold recovery of up to 89.6% from bottle roll testwork on oxide material, and 82.7% from column leach testwork on oxide material (100% passing 38mm crush size) after 75 days. Mixed material, which is a 'mixture' of oxide and partially oxidised material containing some sulphides typically yields lower Au recoveries.

Flagship has collected a total of approximately 690kg of material comprising 211kg of oxide, 235kg of mixed and 243kg of sulphide material. The samples are composed of ½ HQ drill core with maximum diameter of 63mm. Details of the samples such as hole number, location, sample interval and grades are shown in Appendix 1. The gold grades of the oxide and mixed samples of 0.54g/t and 0.65g/t respectively are chosen to reflect potential average mined grades of these materials. The samples are placed in polyweave sacks and placed into a pallet crate (see Figure 2) and ready for shipment to Flagship's EPC partner Shandong Xinhai Mining Technology & Equipment Inc. (Xinhai) testing facilities in China.

Figure 2: 690kg of sample (211kg oxide; 235kg mixed; 243kg sulphide) from the Pantanillo Gold Project ready for Metallurgical testing

The location of the sampled drillholes is shown in Figure 3. Cross sections showing the holes and sampled intervals are shown in Figures 4 and 5.

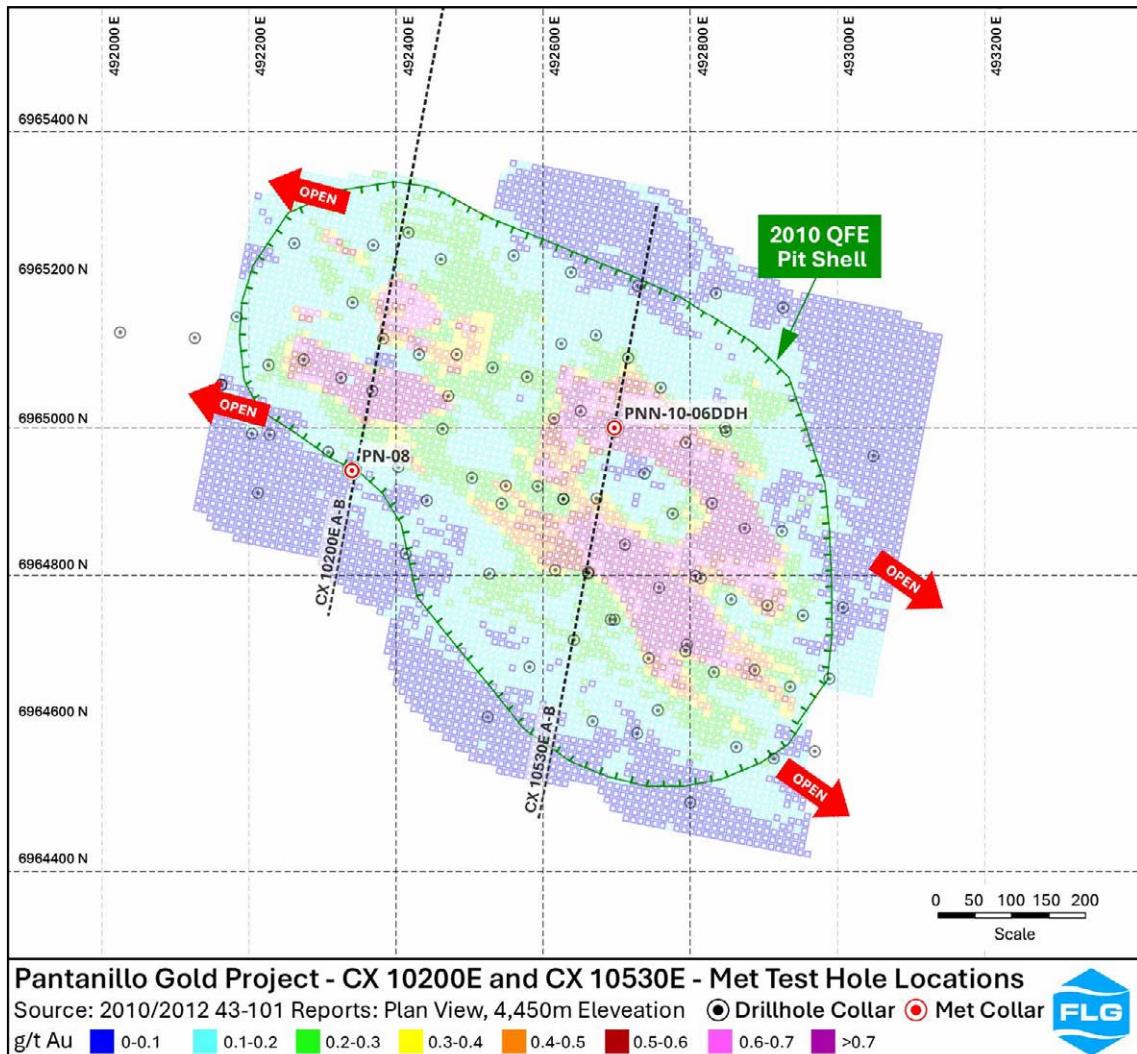


Figure 3: Pantanillo Gold Project - QFE block model at 4450mASL showing Met Test Hole locations

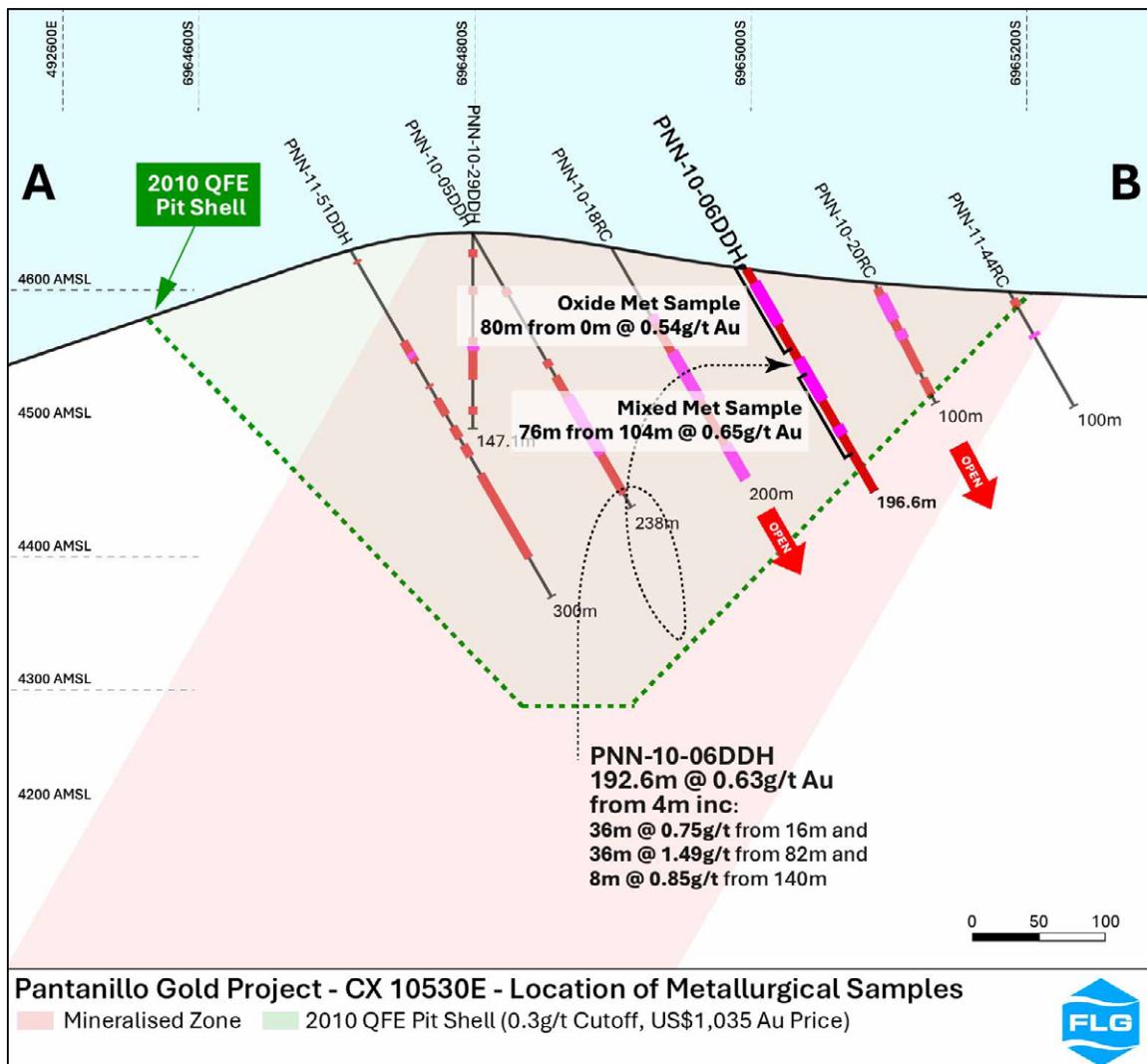


Figure 4: Pantanillo Gold Project - Cross Section 10530E showing Met Test Sample locations

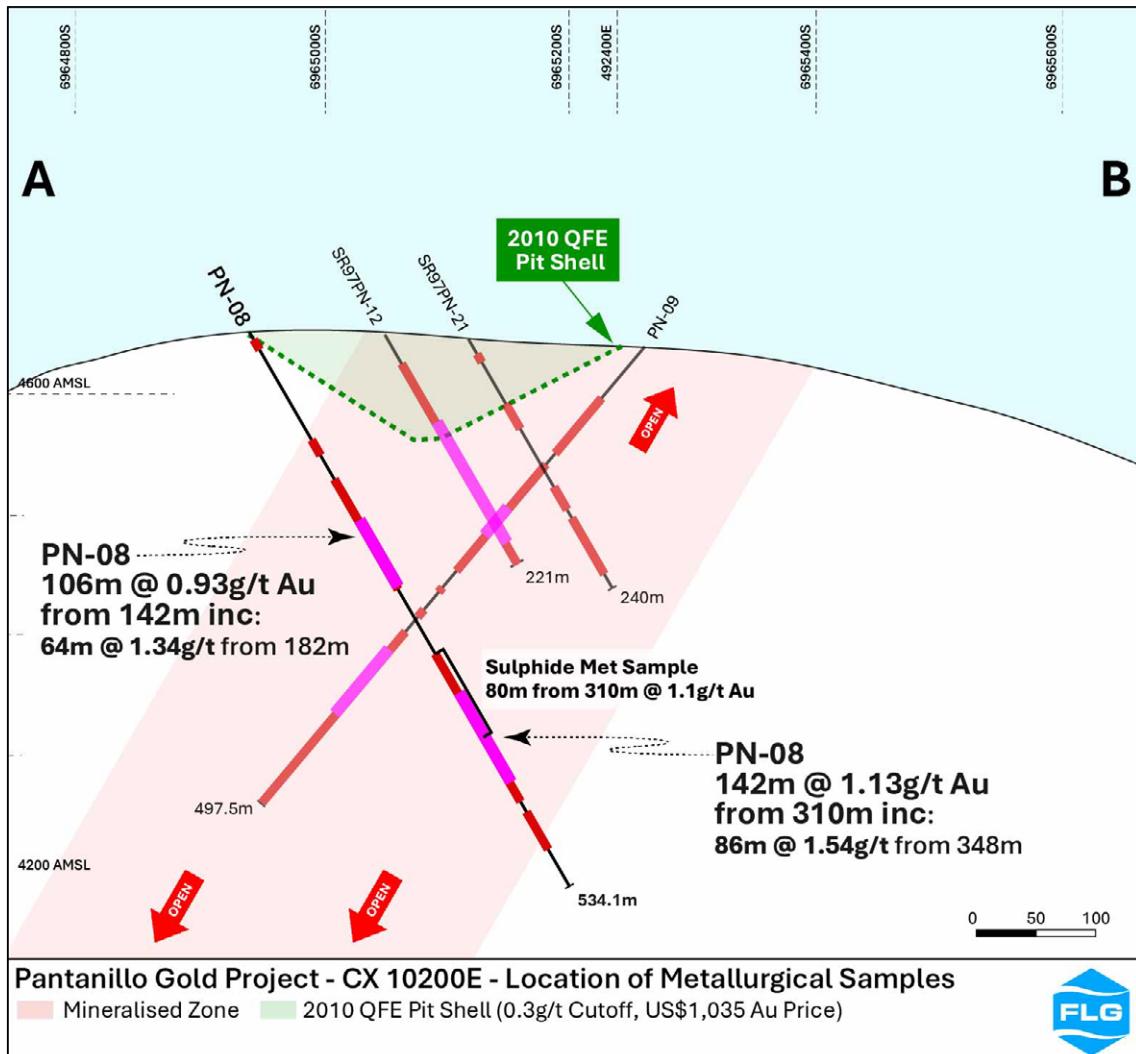


Figure 5: Pantanillo Gold Project - Cross Section 10200E showing Met Test Sample location

Flagship-Xinhai will conduct testwork to confirm and enhance results obtained in heap leach testwork conducted by previous explorers. The program will focus on particle crush size v Au recovery v time for oxide and mixed mineralisation. Reagent consumption and other leach kinetics will also be investigated. The results of the testwork will assist in optimizing future test programs and providing additional data to be used in Mineral Resource estimation and feasibility work.

The testwork will also provide a preliminary assessment for the potential of 'dump leaching', which typically refers to the leaching of blasted Run of Mine (ROM) 'ore' delivered to the leach pad by truck, directly by haul truck from the mine. This removes the need for crushing, screening, stockpiling, conveying, agglomeration and rehandling. Dump leaching can materially reduce pre-production capital expenditure (Capex), sustaining capital expenditure and operating costs (Opex). Aside from decreasing Capex and Opex, dump leach also simplifies the

operations which serves to reduce risk. Flagship is planning to excavate a bulk sample of near surface oxide material in order to conduct dump leach testwork in Copiapo.

A dump leach project (Fenix) currently under construction is located approximately 50km north of Pantanillo in a similar setting. Fenix is owned by TSX listed Rio2 (TSX: RIO, MCap ~A\$1.1B) and provides a useful benchmark for Pantanillo. At the end of the September quarter Rio2 announced that construction is 63% complete, is on time and on budget, with first gold production expected in January 2026⁴. The current mine plan estimates Fenix will produce 1.32 Million ounces of gold over a 16 year mine life, at a life of mine ore reserve grade of 0.48g/t Au with average life of mine All in Sustaining Costs (AISC) of US\$1,237/oz Au⁵.

Testwork conducted by previous explorers on sulphide mineralisation from Pantanillo indicates this material is generally not amenable to heap leach treatment. Upcoming testwork on the sulphides will involve flotation to produce a pyrite-gold concentrate. This work will focus on grind size v flotation conditions v Au recovery. Once a satisfactory concentrate is produced additional work may be conducted to assess gold recovery methods. There is also potential for the concentrate to be sold to third parties, including several proximal copper smelters. The sulphide test sample from hole PN-08 has an average grade of approximately 1.1g/t Au, to reflect higher grades required compared to heap leaching.

Flagship starts discussions with drilling companies, including a Pantanillo site visit

A site visit to Pantanillo was undertaken by MD/Chairman Mr. Paul Lock and Technical Director Mr. David Hobby, to introduce a Copiapo based drilling contractor to the Project. Flagship is planning additional drilling in 2026 to:

- a. Generate drill core for Metallurgical testwork as and if required;
- b. As required, complete infill and extend mineralisation inside and proximal to the open pit boundary defined as part of “and post” the new Mineral Resource Estimate (MRE) currently underway; and
- c. Conduct extensional drilling in preparation for an MRE upgrade later in 2026.

Site photo's from the visit are shown in Figure 6.

⁴ See Rio2's news release dated 29 October, 2025, and titled “Rio2 Provides Fenix Gold Mine Q3 2025 Construction Update” - <https://www.rio2.com/post/rio2-provides-fenix-gold-mine-q3-2025-construction-update>

⁵ For details on Rio2's Fenix Gold Project, see: <https://www.rio2.com/post/rio2-completes-feasibility-study-for-the-fenix-gold-project>.

Figure 6: Flagship and a Copiapo based drilling contractor on site at the Pantanillo Gold Project

Strategy and Work Plan

Flagship's strategy for the Pantanillo project is to define sufficient Mineral Resources that will support considerations for project development consisting of open pit mining and heap leach processing with an aim to produce 100,000oz of gold per year for at least 10 years.

Flagship's work plan for the Pantanillo Gold Project will focus on the following:

- 1. Updating and expanding the existing QFE into a Mineral Resource Estimate** reported in accordance with the **JORC Code (2012)**. This will include validating existing drill data and, as required, additional resampling of drill core, confirmatory and infill drilling and other supporting technical work. Flagship does expect to increase the Mineral Resource without immediate drilling, leveraging the newly acquired data and updated economics and previous metallurgical testwork.
- 2. Advancing metallurgical testwork and project studies** for input into a techno-economic assessment.
- 3. Extensional drilling in early 2026 for an anticipated MRE upgrade later in 2026.**

As the techno-economic assessment progresses, Flagship will consider opportunities to bring in additional oxide and higher-grade sulphide gold mineralisation resources that may exist throughout the broader ~110km² holding, see Figure 7.

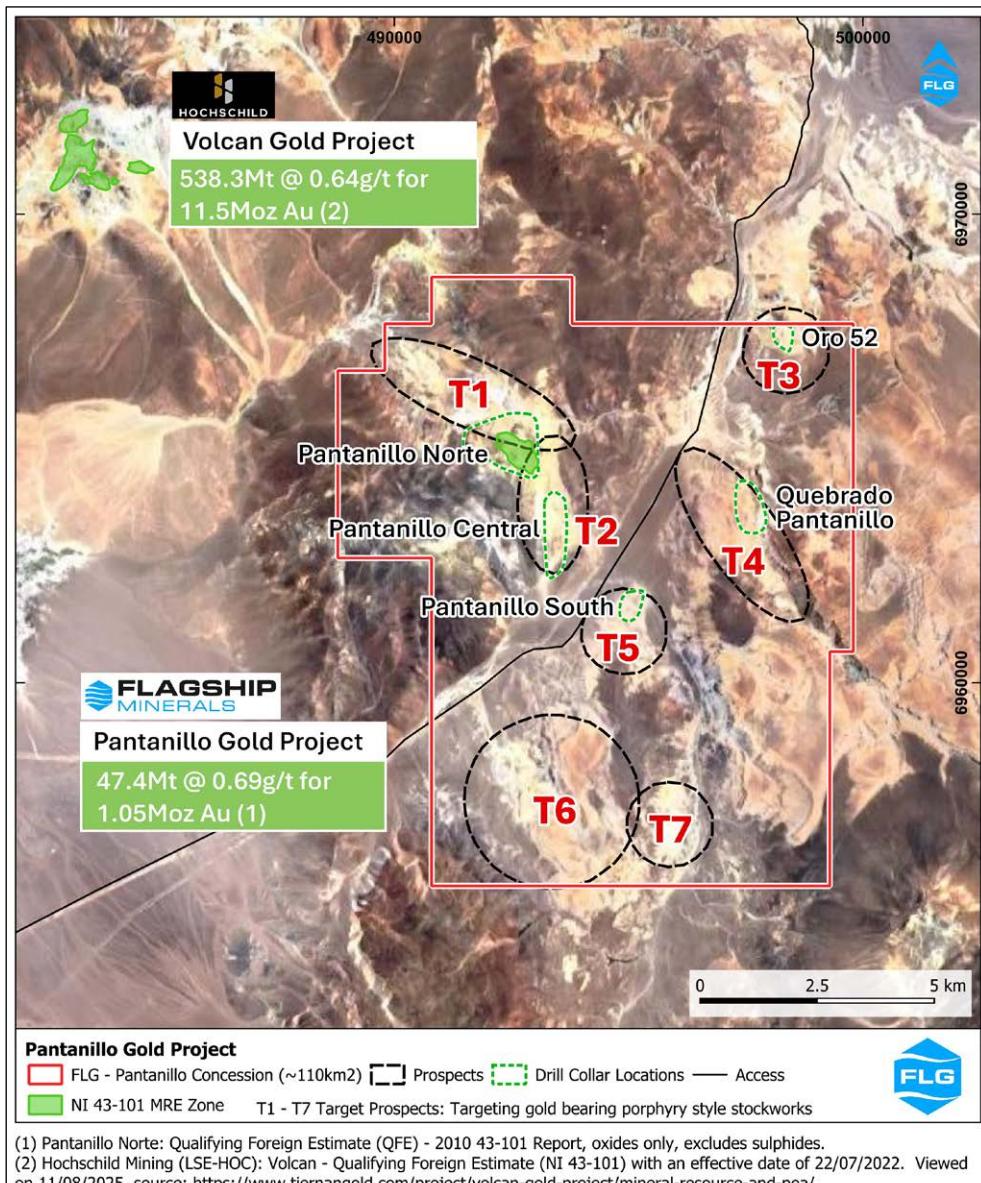


Figure 7: Pantanillo Gold Project – Local Setting and Prospects

Flagship looks forward to providing shareholders and the market with regular updates regarding activities associated with the ongoing evaluation of the Pantanillo gold project.

- Ends -

Authorised by the Chairman and Managing Director

For further information please contact:

Paul Lock

Managing Director

ceo@flagshipminerals.com

Elissa Hansen

Company Secretary

cosec@flagshipminerals.com

Phone: +61 2 7228 7994

For media or investor-related inquiries:

Robert Williams

Financial & Corporate Relations (FCR):

r.williams@fcr.com.au +61 (0) 477 666 255

IMPORTANT INFORMATION

Competent Persons Statement - General

The Exploration Results and information in this announcement reported under Listing Rule 5.12 that relates to foreign estimates of mineralisation at the Pantanillo Project is based on and fairly represents information compiled by Mr David Hobby and is an accurate representation of the available data and studies for the Project. Mr Hobby is a Member of the Australasian Institute of Mining and Metallurgy and is an employee and Executive Director of Flagship Minerals Limited. Mr Hobby has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results and Mineral Resources, and Ore Reserves. Mr Hobby consents to the inclusion in the announcement of the matters based on the information in the form and context in which it appears.

Forward Looking Statements

Various statements in this document constitute statements relating to intentions, future acts and events which are generally classified as "forward looking statements". These forward looking statements are not guarantees or predictions of future performance and involve known and unknown risks, uncertainties and other important factors (many of which are beyond the Company's control) that could cause those future acts, events and circumstances to differ materially from what is presented or implicitly portrayed in this document. For example, future reserves or resources or exploration targets described in this document may be based, in part, on market prices that may vary significantly from current levels. These variations may materially affect the timing or feasibility of particular developments. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Flagship Minerals Limited cautions security holders and prospective security holders to not place undue reliance on these forward-looking statements, which reflect the view of Flagship Minerals Limited only as of the date of this document. The forward-looking statements made in this document relate only to events as of the date on which the statements are made. Except as required by applicable regulations or by law, Flagship Minerals Limited does not undertake any obligation to publicly update or review any forward-looking statements, whether as a result of new information or future events. Past performance cannot be relied on as a guide to future performance.

Important

To the extent permitted by law, Flagship Minerals Limited and its officers, employees, related bodies corporate and agents (Agents) disclaim all liability, direct, indirect or consequential (and whether or not arising out of the negligence, default or lack of care of Flagship Minerals Limited and/or any of its Agents) for any loss or damage suffered by a Recipient or other persons arising out of, or in connection with, any use or reliance on this document or information.

Appendix 1 – Drill Collar Data and Assay Intersections

Table 1 - Drill Collar Data

Hole ID	North WGS84	East WGS84	RL	EOH	Azimut	Dip
PN-08	492755.2	6964614.7	4607	-60	15	297
PNN-10-06DDH	492697.1	6964999	4607.654	196.6	8	-60

Table 2 - Assay Intersections

Hole ID	From (m)	To (m)	Intercept (m)	Au / Ag (g/t)	Mineralisation Style
PNN-10-06DDH	0	80	80	0.54	Oxide
PNN-10-06DDH	104	180	76	0.65	Mixed
PN-08	310	390	80	1.10	Sulphide

Appendix 2 - JORC Code, 2012 Edition – Table 1 Pantanillo drilling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where ‘industry standard’ work has been done this would be relatively simple (eg ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay’). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> Anglo American RC drilling acquired 2m RC split samples and 2m DD ½ core samples Kinross RC drilling acquired 2m RC split samples and 2m DD ½ core samples <p>Whole samples were crushed, and a 1kg split was pulverized. Samples assayed for Au by fire assay with 50g charge, and Cu, as well as cyanide soluble copper and cyanide soluble gold</p> <ul style="list-style-type: none"> Orosur drilling: 1m split RC samples, 2m ½ core DD samples. Samples assayed by 50g fire assay plus Cu and multi elements by ICPAES.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Anglo was all RC drilling. Kinross drilled 5 ¾ inch RC and HQ diamond core. Orosur drilled 5 ½ inch RC and HQ3 diamond core
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> No records for Anglo drilling. Kinross did not record RC recovery, Kinross stated HQ core recoveries >90% in all but two holes. Orosur RC recoveries by weight estimated average recovery of 86%. Core recoveries from HQ3 stated as 93% average.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical</i> 	<ul style="list-style-type: none"> The quantity and quality of lithological and geotechnical data collected by the Kinross and Orosur personnel are sufficient to support Mineral Resource estimation in the opinion of the

Criteria	JORC Code explanation	Commentary
	<p><i>studies.</i></p> <ul style="list-style-type: none"> • <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> • <i>The total length and percentage of the relevant intersections logged.</i> 	<p>QPs. All core was photographed.</p> <ul style="list-style-type: none"> • All core was photographed and 100% of all intersections are assumed to be logged, as QP did not identify logging as an issue.
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none"> • <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> • <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> • <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> • <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> • <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> • <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> • Anglo procedures are unknown • All ½ core samples were sawn on cut line • All RC samples were riffle split • Kinross RC and core samples were crushed to 100% <2mm, a 1kg sub-sample was split off and pulverized to 85% <0.075mm. QC procedures are unknown at this point. • Orosur RC and core samples were crushed to 100% <12mm with this sample split in half. One spit was crushed to 80% < 2mm with a split 500g sub-sample then pulverized to 85% <0.075mm. • For Orosur drilling field duplicates were inserted at 2.8% ratio. • In all cases sample sizes are considered appropriate
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> • <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> • <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> • <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> • Anglo American/EMMB methods are not documented, other than the analysis was conducted by GEOLABS. • Kinross samples assayed by ALS Chemex in La Serena for Au by method AA24, which is fire assay with 50g charge and AAS finish, and Cu by method AA61 which is four acid digestion and AAS finish). These would be considered total extraction. Cyanide soluble copper and cyanide soluble gold analysis were also performed, using 20g aliquot with AAS finish. These methods are considered partial. Kinross QA/QC during the 2006 drilling program, the QC program implemented by Kinross included the analysis of pulp duplicates with a frequency of one duplicate in 20 samples (5%). In 2007, blanks and three reference materials were also inserted at irregular frequencies, but the detailed QC data were not available to the QP. • During the 2008 drilling program, Kinross implemented a QC program consisting of the insertion of four SRMs (5.2%), pulp blanks (4.5%) and pulp duplicates (4.1%). AMEC processed the available QC data. The pulp duplicate error rate was 2.5%, reasonable considering an acceptable

Criteria	JORC Code explanation	Commentary
		<p>duplicate error rate limit of 10%. Most SRM values were in control (only one outlier for one of the SRMs) and the bias values ranged between -0.3% and 3.6%.</p> <ul style="list-style-type: none"> • Orosur samples assayed by ACME with 50g fire assay for gold with AAS finish plus ICPAES for copper and 33 other elements with 4-acid digestion. These methods considered total extraction for metals of interest. The Orosur QC protocol included the insertion of 425 control samples for 2,925 ordinary samples, as follows: 83 twin (and field duplicate) samples (2.8% average insertion rate), 185 pulp duplicates (6.3% average insertion rate), 99 coarse blanks (2.6% average insertion rate), and 80 reference material samples belonging to four standard reference materials (SRMs) prepared by CDN (2.7% average insertion rate). The programs did not include the resubmission of check samples to a secondary laboratory. • According to the QP, the QA/QC program results do not indicate any problems with the analytical programs and the data appear to be sufficiently precise and accurate for Mineral Resource estimation purposes. • Drill data were checked for the Anglo American program by resubmission of 100 Anglo pulps. As a result of this resampling test, AMEC is of the opinion that the Anglo American assay data appear to be sufficiently precise and accurate for Mineral Resource estimation purposes. • A total of 16 drill samples from the Kinross 2006 program were subjected to independent FA assays in ALS Chemex and Acme using 50 g aliquots, and most of values gave only small differences from original assays.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> • <i>The verification of significant intersections by either independent or alternative company personnel.</i> • <i>The use of twinned holes.</i> • <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> • <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> • AMEC checked hard copy lab assay reports for gold against the assay 'database' provided by Orosur and found no material issues. • There is no discussion about twinned holes by AMEC. However, in the 2009 NI 43/101 does show an RC hole twinned with a diamond hole. The results of the same 50m interval in both holes showed a 238% grade increase from the RC to the DDH intersection, 0.99 to 2.38g/t Au respectively. However, a review of RC v DD intersections would appear to indicate limited if

Criteria	JORC Code explanation	Commentary
		<p>any assay bias.</p> <ul style="list-style-type: none"> • Orosur provided AMEC with Microsoft Excel® files with survey, assay and lithology data corresponding to Anglo American, Kinross and Orosur drilling campaigns. AMEC reviewed, completed and validated the available information, and prepared a comprehensive database, which was the basis for the current resource estimation. • AMEC performed a review of selected drill collar, down-hole survey, data, lithology records and assay data incorporated into Orosur's database. A review of potential contamination of the RC drill data was undertaken, in addition to a QA/QC review. • AMEC considers that a reasonable level of verification has been completed during the 2010 data review and no material issues would have been left unidentified from the verification programs undertaken. No problems with the database, sampling protocols, flowsheets, check analysis program, or data storage were identified that were sufficient to preclude the use of the database for estimation purposes.
<i>Location of data points</i>	<ul style="list-style-type: none"> • <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> • <i>Specification of the grid system used.</i> • <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> • Collar surveys were performed for the Kinross and Orosur drill programs by registered surveyors using differential GPS equipment. No information is available on the collar survey methods for the Anglo American drilling. Down-hole survey methods included a gyroscope/accelerometer (Kinross programs) and Reflex down-hole dip and magnetic azimuth survey equipment (Orosur program). • All the project coordinates were subsequently transformed into the WGS-84 19S system from PSAD 56. • AMEC received a digital topography from Orosur as 5 m- and 10 m-spaced contour lines that were the product of photo-interpretation. AMEC imported the contour lines into GEMS® and compared the surveyed drill-hole collar elevations against the topographic surface, and found that significant differences did occur for all drill holes. with 60% of the differences above 10 m. AMEC updated portions of the topographic surface using surveyed drill-hole collar elevations

Criteria	JORC Code explanation	Commentary
		as a preliminary fix; however, AMEC recommends that a new digital topographic surface be generated to correct any problems and enable an accurate topographic clip to the block model.
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> • <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> • The drilling grid was approximately 50 m spaced sections with 50m-100m hole spacing. AMEC considered this adequate for the “resources” reported. • The nominal sample length for assays was 2 m, corresponding to 82.6% of total samples; 17.0% of the samples are less than 2 m long, and only 0.4% of the samples are longer than 2 m. For estimation purposes, the original assayed interval length was used to honour the grade-shell contacts and variability observed in the deposit.
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> • <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> • <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> • Drill orientations are generally appropriate for the mineralisation style, and have been drilled at orientations that are optimal/near optimal for the orientation of mineralisation for the bulk of the deposit area. • Some holes were drilled in the opposite direction and are sub-parallel to the key mineralised structures. However, grades in these holes are not materially different to other holes drilled orthogonal to mineralisation on that cross section or the block model grades..
<i>Sample security</i>	<ul style="list-style-type: none"> • <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> • AMEC state, sample security appears to be appropriate for gold-copper porphyry deposits for the Anglo American and Kinross drill programs, and are appropriate for the 2010 Orosur drill program for the purposes of Mineral Resource estimation on the Pantanillo Norte deposit.
<i>Audits or reviews</i>	<ul style="list-style-type: none"> • <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> • Independent data audits have been conducted, and indicate that the sample collection and database entry procedures are acceptable

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The Pantanillo Project comprises 3 exploitation concessions corresponding to an area of 11,000 hectares the ("Mining Rights"). These Mining Rights are exclusively held by Compañía Minera Atahualpa SpA ("CMA"). The Concessions are GUILLERMO ANTONIO 1 AL 400, GABRIELA 1 AL 1000 and CECILIA 1 AL 950. Flagship has a 5-year Option agreement to acquire a 100% interest in the project or a total consideration of \$US 12.6 Million. The tenure is secure as long as annual fees and rents are paid to the Government. Project development will require submission of a full Environmental Impact Statement (EIS). The Project is situated in an area of environmental significance and is adjacent the Nevado Tres Cruces National Park. Certain sectors are classed as Ramsar sites. An application to modify the Ramsar site boundaries was made in 2009. Consequently, any Project development activities will require consideration of endemic flora and fauna, wetlands, Astaburuaga River, the proximity of the Project to Nevado Tres Cruces National Park, its biological corridor and proposed buffer extensions.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> In the early 1980s, Anaconda conducted initial exploration activities on the project; however, no details were available on these programs. Modern exploration has been conducted by Anglo American, Kinross, and Orosur Mining Inc. Work completed in the period 1983 to 2011 has included geological mapping, soil and rock geochemical surveys, trenching, Quickbird topography, reverse circulation (RC) and core drilling, ground magnetics, Mineral Resource estimation, metallurgical testwork and project studies . In the opinion of the AMEC QPs, the exploration programs completed to date are appropriate to the style of mineralisation within the project. The Pantanillo deposit may have

Criteria	JORC Code explanation	Commentary
		<p>additional exploration potential for sulphide mineralization down-dip to the southwest, and below the ignimbritic cover in the southeast. Other prospects in the project area also need follow-up. Much of this data has not been seen by Flagship.</p>
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The Maricunga belt represents a 200 km long by 50 km wide metallogenic district, located along a NNE-SSW-trending chain of Upper-Oligocene to Mid-Miocene age andesitic to dacitic volcanoes running along the Argentine-Chile border. The volcanoplutonic arc developed on a Pennsylvanian to Triassic basement composed of granitoids and intermediate to silicic volcanic rocks, overlain by Mesozoic to early Tertiary continental volcanic and clastic rocks. Subsequent erosion of late Tertiary volcanoes exposed the frequently hydrothermally altered sub-volcanic porphyry stocks. The overall geological setting of the Maricunga belt corresponds to compounded, interfingering, discontinuous and texturally highly variable strato-volcanic accumulations. Although active volcanism is present in Northern and Southern Chile, there is no 'recent' volcanic activity in the Maricunga belt. The Property is located in the central part of the Maricunga Belt, directly between the Maricunga Mine (Ex-Refugio) and the Marte-Lobo project, both owned and operated by Kinross. The Maricunga Belt hosts numerous porphyry and epithermal style Au and Au-Cu style deposits. The Pantanillo gold deposit is over 850m long and between 200m-600m wide and remains open along strike and down-dip. The mineralised zone strikes NE-SW and dips at 30-45 deg to the southwest. Mineralisation is hosted in weathered and altered andesitic porphyry with sheeted and stockwork quartz veins. Oxide zones contain kaolinite, alunite, with limonite/goethite and hematite after pyrite. Fresh rock has a chlorite +/- magnetite +/- pyrite +/- quartz alteration assemblage, with denser vein swarms, local breccia zones and late quartz-alunite veins hosting mineralisation, commonly with higher gold grades.

Criteria	JORC Code explanation	Commentary
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> • Drill hole information is provided in the document
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> The drillhole intersections are weighted averages reported at downhole widths. The basis of reporting the intersections is not stated. However, it is fair to assume a lower cutoff of around 0.30g/t Au (maybe allowing for some internal dilution) has been used to generate the broader intersections, with contained higher grade zones also being reported at maybe $\geq 0.5\text{g/t Au}$. Examples of these intersections are shown in the document. The bulk intersection reported hole ARDDH-PN02 is reported at a 0.1g/t AU cutoff allowing for 3m of internal dilution.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> Mineralized zone over 850 m long and strikes in a 300 degree direction and is 200-600 m wide, dipping 30° to 45° to the southwest. The drilling is generally oriented between 0 and 20 degrees or N-NNE. Hole dips are generally 60 degrees, some slightly steeper and shallower. Most of the mineralised intersections are estimated to be approximately 75-90% of true width.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Cross sections and a level plan are shown in the report as Figures 2 to 6. Drill intersections are reported on the Cross sections in the document

Criteria	JORC Code explanation	Commentary
<i>Balanced reporting</i>	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> All data currently available to the Company that relates to drilling has been reported most of which is available in the NI43/101 reports that are referenced in the document, with links provided.
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> The drilling data and QFE reported is supported by metallurgical testwork of drill samples which have indicated much of the mineralisation is amenable to heap leach treatment after crushing to 80% -25mm. Bulk density measurements have been performed and sufficient drill core has been geotechnically logged. An assessment of copper and arsenic has been undertaken as potentially deleterious or contaminating substances. No material issues were identified.
<i>Further work</i>	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Key activities proposed to ensure the qualifying foreign estimate complies with the JORC Code (2012 Edition) will include: Detailed verification and validation of information contained in the NI 43-101 report, particularly information relating to the drillhole database including sampling and assaying QA/QC, verification re-sampling and assaying of available ½ drill-core and sample pulps, verification of location/survey data, improving the geological model relevant to the mineralisation, verification of density measurements applied to the different styles of mineralisation as well modelling of the oxide, mixed and fresh rock components of the mineralisation The completion of additional diamond core drilling maybe required to assist in validating the historical drill data that will be applied to a new Mineral Resource estimate. The application of updated modifying factors, such as metallurgical testwork on new drill core will assist in determining cut-off parameters. Pit optimisations may also be conducted on the new Mineral Resource leading to further technical studies to potentially define Ore Reserves.