

Encouraging copper and gold geochemistry expands the Whatling Hill Project in NSW

Highlights

- Compelling near surface copper and gold footprint from soil geochemistry now extends 4km to the south of Whatling Hill.
- Rock chip values of up to 2% copper and 0.25g/t gold in quartz stockwork veins within altered monzonite intrusives suggest nearby porphyry copper-gold mineralisation.
- Age dating and alteration similar to other large porphyry copper-gold deposits in the province (e.g., the world-class Cadia-Ridgeway and the North Parkes deposits).
- Project leasing expanded with the grant of a new tenement, consolidating Emmerson's ground position in the highly prospective Lachlan Transfer Zone.
- Induced Polarisation geophysical program is starting next month to guide drilling in early 2019.

Emmerson's Managing Director; Mr Rob Bills commented:

"This expanded soil geochemical program over the Whatling Hill project now indicates the additional potential for copper-gold mineralisation 4km to the south of the previous survey. This geochemistry is consistent with elevated copper and gold from rock chip samples taken from a sparse outcrop in the region.

Based on the encouraging early stage results at both Whatling Hill and nearby Kadungle, Emmerson has consolidated its ground position to take account of possible multiple centres of porphyry copper-gold mineralisation occurring within the Macquarie Arc and Lachlan Transverse Zone (Figure 1).

Our field-based exploration has been complemented by cutting edge science which has included analysis of the alteration (trace and rare earth elements within the outer green rock or epidote/chlorite zone) where initial findings suggest we are within the geochemical footprint of a porphyry system. Moreover, age dating of the monzonite intrusion within the Raggatt Volcanics yielded a Late Ordovician to Early Silurian age – consistent with dates of the mineralised intrusions at the world-class North Parkes and Cadia-Ridgeway gold-copper deposits (work completed as part of the University of Tasmania CODES ARC Linkage project)

Obviously, a discovery across any of our NSW projects would be transformational for the company – particularly given the paucity of new copper-gold projects and the competition for new resources."

Whatling Hill (Figure 2)

The extension of the Whatling Hill geochemical program has yielded very encouraging copper-molybdenum-gold geochemical results over a large 4km² area. As previously reported (ASX: August 2018), the 500m grid based aircore program at Whatling Hill produced elevated copper, molybdenum and gold corresponding to sparse outcrops of quartz stockwork magnetite veins within highly altered monzonite intrusives. These quartz-magnetite-chalcopyrite stockwork veins, assay up to 2% copper and 0.25g/t gold, providing evidence of potential for underlying or nearby mineralisation (ASX: June 2018).

This mineralisation was identified from systematic sampling and recognition of widespread epidote-chlorite alteration typically associated with the outer zones of porphyry copper-gold mineralisation. Moreover this project (plus our five other NSW projects) were selected from the application of proprietary predictive targeting models, aimed to increase the probability of a major discovery of copper and gold.

Whatling Hill South (Figure 3)

Grid-based aircore sampling covering an area some 4km² to the south of Whatling Hill now extends the gold-copper anomalism for a total length of 5kms and over 1km wide. With the aircore drilling revealing pervasive epidote-chlorite alteration, elevated in copper, molybdenum and gold. Typically this metal zonation signals proximity to the centre of the porphyry system, supported by the presence of altered quartz monzonites that also have elevated rock chip assays of up to 0.6% copper.

The host Ordovician Raggatt Volcanics and related intrusives are truncated to the west by the Devonian Gobondery Granite, and to the east by the overlying Silurian conglomerates – providing a “window” of prospective metal fertile Ordovician rocks that likely extend undercover to the east where Emmerson have recently expanded its ground position to include the greater Kadungle project (Figures 1 and 4).

This window of prospective Ordovician rocks is anomalous in metals and mostly covered by regolith (Figure 4). Trace element analyses of epidote from the recent aircore drilling reinforce previous conclusions that this belt is prospective for porphyry copper-gold and epithermal gold-silver mineralization (as determined from collaboration with the University of Tasmania via the ARC Linkage Project (Figure 5).

The next stage of exploration will consist of a regional, Induced Polarisation (IP) geophysical survey, aimed at collecting subsurface information ahead of selecting drill targets (Figure 6).

Other NSW Projects

An Induced Polarisation geophysical survey will also be conducted over our Wellington project where we have previously reported elevated copper, gold and molybdenum geochemical results – potentially setting up two projects for drilling in early in 2019.

For further information, please contact:

Rob Bills

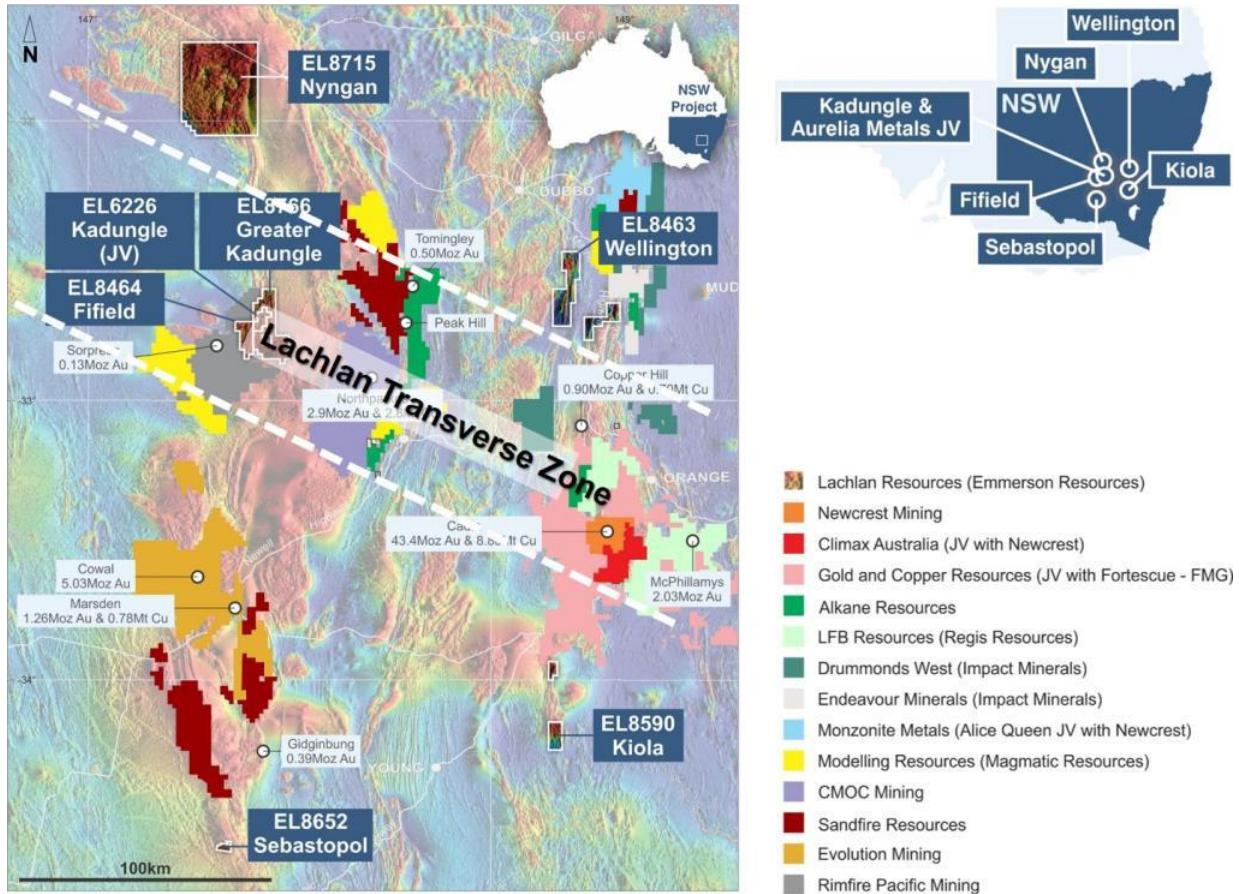
Managing Director and CEO
E: rbills@emmersonresources.com.au
T: +61 8 9381 7838

Media enquiries

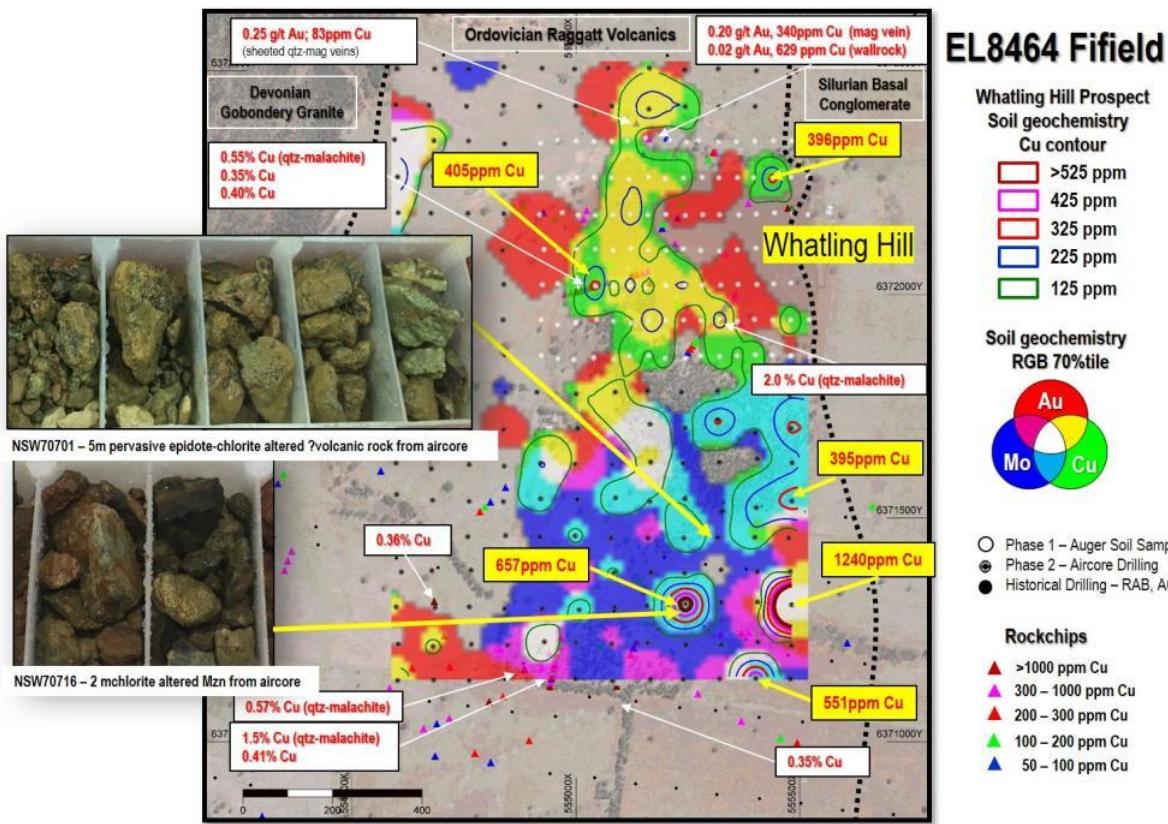
Michael Vaughan, Fivemark Partners
E: michael.vaughan@fivemark.com.au
T: +61 422 602 720

About Emmerson Resources, Tennant Creek and New South Wales

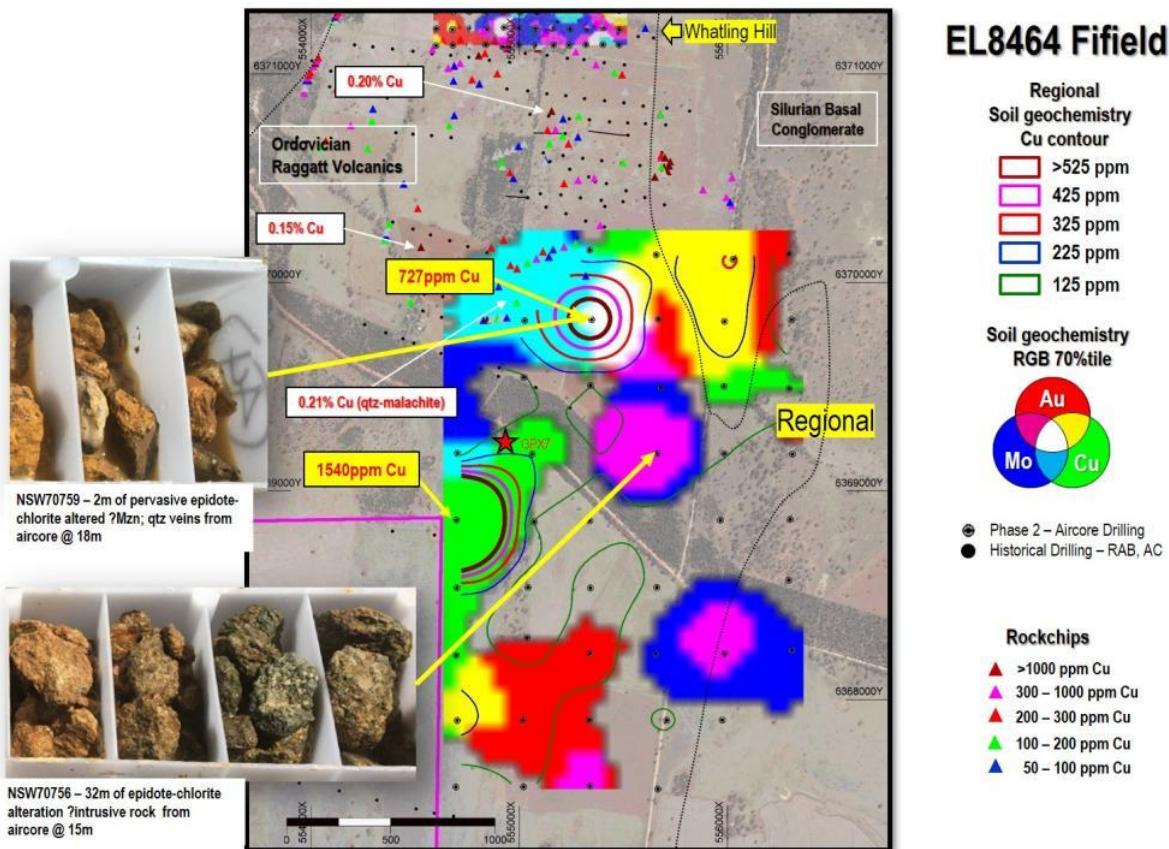
Emmerson recently commenced exploration on new gold-copper projects in NSW, identified (with our strategic alliance partner Kenex Limited) from the application of 2D and 3D predictive targeting models – aimed at increasing the probability of discovery. The highly prospective Macquarie Arc in NSW hosts >80Moz gold and >13Mt copper with these resources heavily weighted to areas of outcrop or limited cover. Emmerson's five exploration projects contain many attributes of the known deposits within the Macquarie Arc but remain underexplored due to historical impediments, including the overlying cover (plus farmlands) and a lack of exploration focus. Kadungle is a JV with Aurelia Metals covering 43km² adjacent to Emmerson's Fifield project.

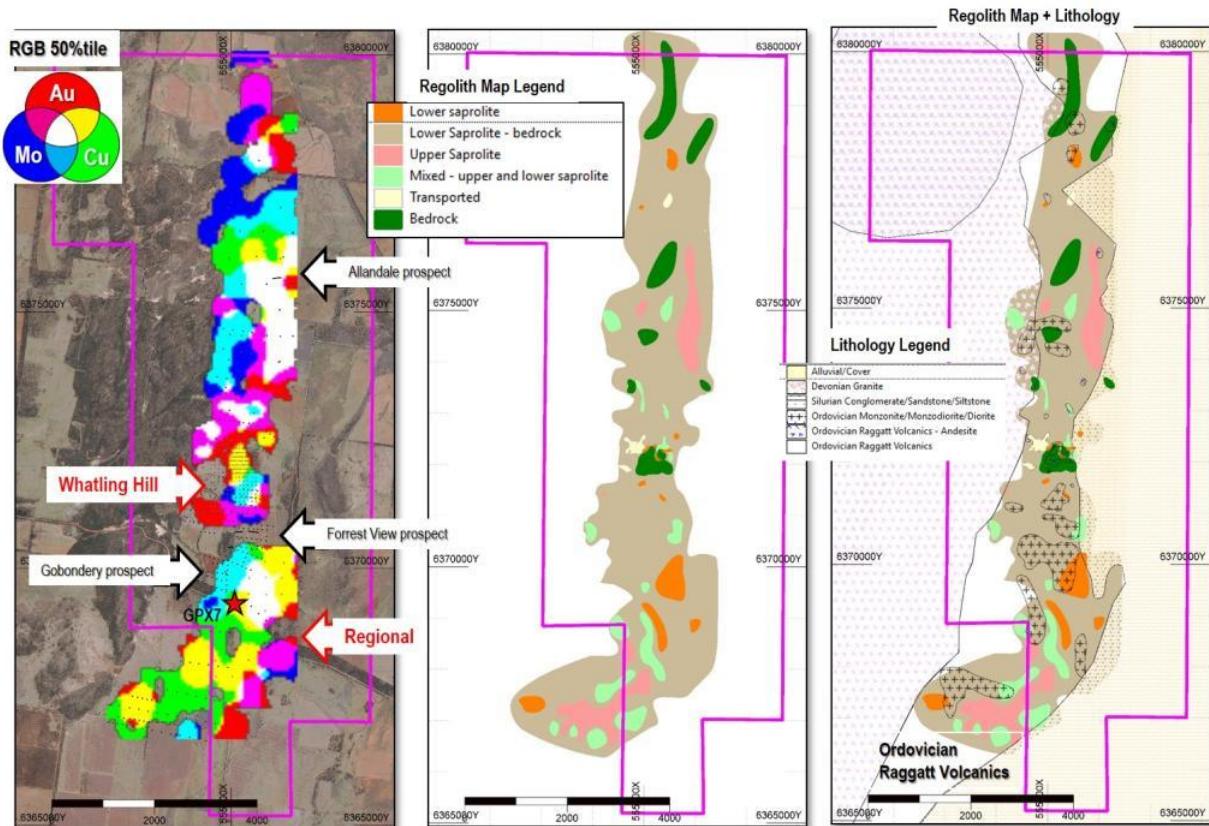

In addition, Emmerson is exploring the Tennant Creek Mineral Field (TCMF), one of Australia's highest-grade gold and copper fields producing over 5.5Moz of gold and 470,000 tonnes of copper from deposits including Warrego, White Devil, Orlando, Gecko, Chariot and Golden Forty. These high-grade deposits are highly valuable exploration targets, and to date, discoveries include high-grade gold at Edna Beryl and Mauretania, plus copper-gold at Goanna and Monitor. These are the first discoveries in the TCMF for over a decade.

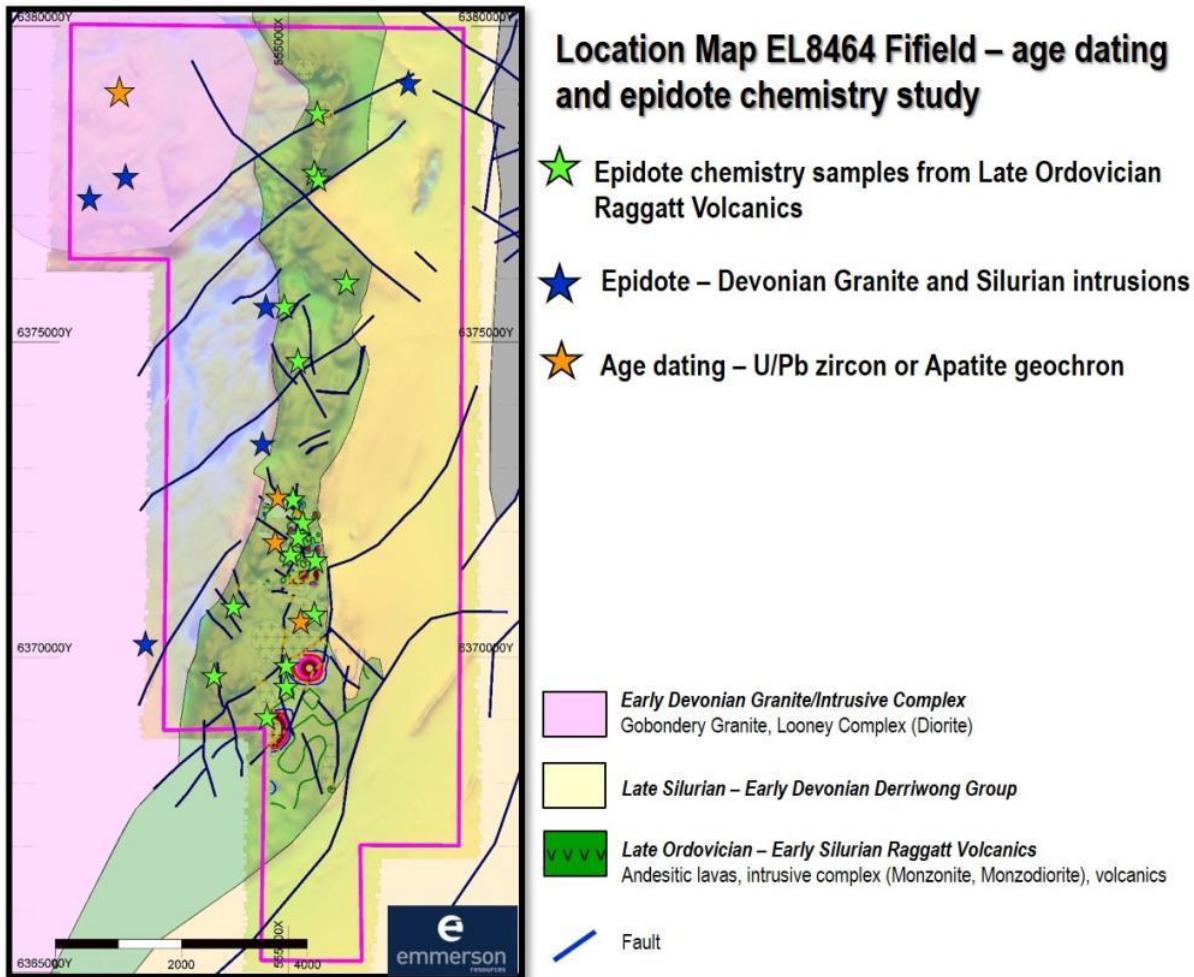
Emmerson recently announced a strategic alliance with Territory Resources to build a central processing hub in Tennant Creek to support the milling and processing from Emmerson's small gold mines and other third-party feed. This alliance now extends to separate Mining and Exploration Joint Ventures with Territory Resources over Emmerson's southern tenements.


Emmerson is led by a board and management group of experienced Australian mining executives including former MIM and WMC mining executive Andrew McIlwain as non-executive chairman, and former senior BHP Billiton and WMC executive Rob Bills as Managing Director and CEO.

Competency Statement


The information in this report which relates to NSW Projects Exploration Results is based on information compiled by Dr Ana Liza Cuisson, MAIG, MSEG. Dr Cuisson is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2004 edition and the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Cuisson is a full-time employee of the Company and consents to the inclusion in this report of the matters based on her information in the form and context in which it appears.


Figure 1. Location of Emmerson's NSW Projects (blue outline). The background is the regional magnetic image, with red indicating the various segments of the Macquarie Arc. Note the Fifield (EL8464) tenement contains the Whatling Hill project.


Figure 2: Geochemical aircore results from the Whatling Hill Project within the larger Fifield tenement. Note the highly altered rockchips from the aircore, rockchip assays (red font) and peak assay results from the regolith (yellow call out boxes).

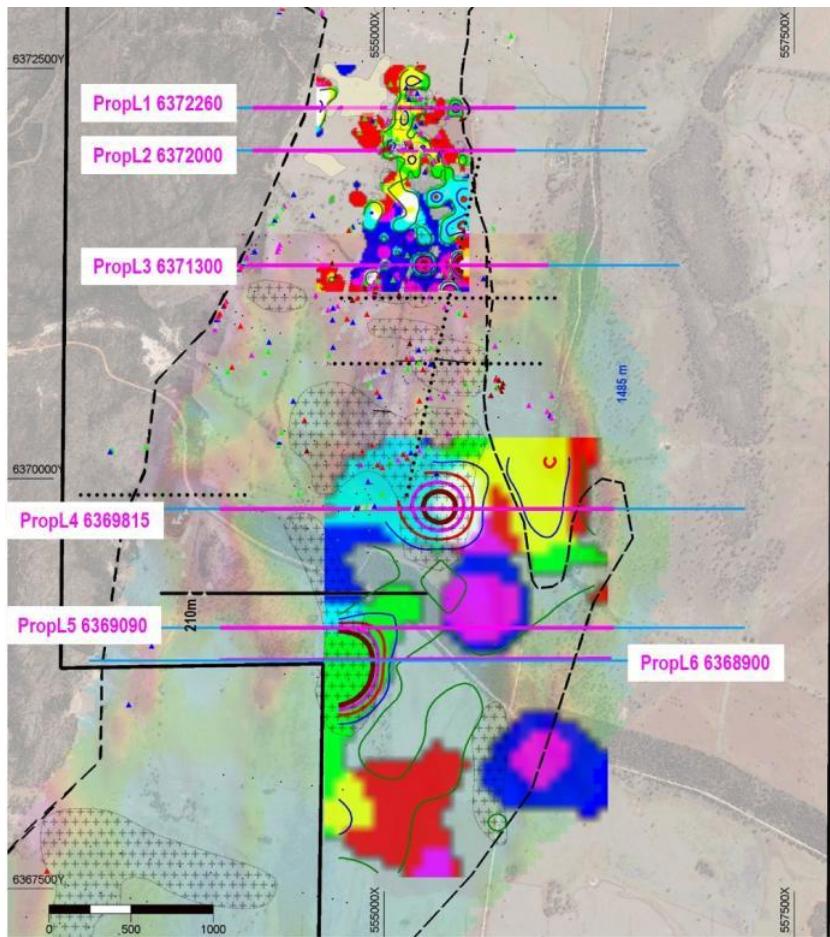
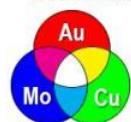

Figure 3: Whatling Hill South (Regional) aircore geochemical results. Note altered epidote-chlorite monzonite rock chips (from the drilling) which correspond to elevated copper-moly-gold geochemistry. Also elevated rockchip results (white call out boxes) and peak soil geochemistry (yellow call out boxes)

Figure 4: Regional geochemistry across Emmerson's Fifield tenement, plus regolith map and geology. Note the elevated copper-moly-gold associated with the Ordovician Raggatt Volcanics and intrusives. This “window” into the prospective Ordovician continues undercover to the east where it adjoins our Greater Kadungle project.

Figure 5: Location of samples for the geochronology and epidote study. Trace element analyses of epidote from the recent aircore drilling reinforce previous conclusions that this belt is prospective for porphyry and epithermal Cu-Au mineralization (ARC Linkage Project – CODES).


EL8464 Fifield

Proposed 2D Dipole – Dipole IP/resistivity Survey Whatling Hill and Regional

Soil geochemistry Cu contour

- >525 ppm
- 425 ppm
- 325 ppm
- 225 ppm
- 125 ppm

Soil geochemistry RGB 70%tile

Rockchips

- ▲ >1000 ppm Cu
- ▲ 300 – 1000 ppm Cu
- ▲ 200 – 300 ppm Cu
- ▲ 100 – 200 ppm Cu
- ▲ 50 – 100 ppm Cu

Figure 6: Location map of proposed 2D Dipole – Dipole IP/resistivity survey at Whatling Hill and Whatling Hill South (Regional).

Table 1: Aircore Drilling Hole Locations – Whatling Hill prospect and Regional

Sample ID	Prospect	MGA94_55 Easting	MGA94_55 Northing	RL	Depth (m)	Dip
NSW70586	Whatling Hill	555491.6	6372498.6	308.0	9	-90
NSW70587	Whatling Hill	555403.1	6372500.0	307.6	6	-90
NSW70588	Whatling Hill	555317.5	6372504.3	312.2	6	-90
NSW70589	Whatling Hill	555242.4	6372501.9	309.2	9	-90
NSW70590	Whatling Hill	555164.1	6372505.8	450.0	6	-90
NSW70591	Whatling Hill	555071.4	6372505.6	314.4	4	-90
NSW70592	Whatling Hill	554996.5	6372503.8	317.0	5	-90
NSW70593	Whatling Hill	554924.0	6372505.4	315.7	6	-90
NSW70594	Whatling Hill	554838.9	6372507.9	319.4	2	-90
NSW70595	Whatling Hill	554760.2	6372503.0	318.3	7	-90
NSW70596	Whatling Hill	554684.2	6372503.9	316.3	4	-90
NSW70597	Whatling Hill	554599.8	6372504.2	317.5	5	-90
NSW70598	Whatling Hill	554597.7	6372423.4	315.9	6	-90
NSW70599	Whatling Hill	554671.3	6372422.5	313.0	5	-90
NSW70601	Whatling Hill	554755.3	6372420.4	309.5	1	-90
NSW70602	Whatling Hill	554837.6	6372422.2	312.3	6	-90
NSW70603	Whatling Hill	554918.6	6372420.5	310.0	5	-90
NSW70604	Whatling Hill	554999.2	6372420.9	307.1	6	-90
NSW70605	Whatling Hill	555079.6	6372421.0	306.7	10	-90
NSW70606	Whatling Hill	555162.7	6372414.3	309.3	9	-90
NSW70607	Whatling Hill	555244.3	6372419.7	311.1	4	-90
NSW70608	Whatling Hill	555319.7	6372419.0	306.7	6	-90
NSW70609	Whatling Hill	555400.4	6372420.1	305.2	6	-90
NSW70610	Whatling Hill	555474.9	6372414.2	301.5	6	-90
NSW70611	Whatling Hill	554840.4	6372336.4	311.7	2	-90
NSW70612	Whatling Hill	554759.5	6372342.9	312.8	5	-90
NSW70613	Whatling Hill	554682.5	6372343.8	308.8	9	-90
NSW70614	Whatling Hill	554594.3	6372345.9	314.6	9	-90
NSW70615	Whatling Hill	554601.3	6372262.6	313.3	6	-90
NSW70616	Whatling Hill	554681.4	6372264.1	311.5	2	-90
NSW70617	Whatling Hill	554754.2	6372282.5	308.4	6	-90
NSW70618	Whatling Hill	554840.2	6372254.2	307.3	4	-90
NSW70619	Whatling Hill	554838.7	6372180.4	307.0	1	-90
NSW70620	Whatling Hill	554758.4	6372180.8	308.7	3	-90
NSW70621	Whatling Hill	554676.0	6372181.5	310.7	3	-90
NSW70622	Whatling Hill	554602.7	6372182.6	314.4	3	-90
NSW70623	Whatling Hill	554595.8	6372091.0	317.6	6	-90
NSW70624	Whatling Hill	554678.2	6372096.6	314.4	2	-90
NSW70626	Whatling Hill	554757.0	6372098.4	310.9	1	-90
NSW70627	Whatling Hill	554835.5	6372098.3	311.0	3	-90
NSW70628	Whatling Hill	554838.4	6372022.3	310.2	1	-90
NSW70629	Whatling Hill	554756.9	6372024.7	311.8	1	-90
NSW70630	Whatling Hill	554677.8	6372021.0	312.5	2	-90
NSW70631	Whatling Hill	554601.0	6372024.2	314.1	6	-90
NSW70632	Whatling Hill	554757.3	6371945.2	311.8	2	-90
NSW70634	Whatling Hill	554596.4	6371941.8	313.7	4	-90
NSW70635	Whatling Hill	554673.7	6371939.6	312.6	3	-90
NSW70636	Whatling Hill	554836.7	6371943.1	310.4	3	-90
NSW70637	Whatling Hill	554840.5	6371864.4	308.8	2	-90
NSW70638	Whatling Hill	554763.0	6371863.1	313.7	2	-90
NSW70639	Whatling Hill	554680.1	6371858.3	316.3	3	-90
NSW70640	Whatling Hill	554600.1	6371865.3	319.3	6	-90
NSW70641	Whatling Hill	554912.4	6371781.3	309.1	2	-90
NSW70642	Whatling Hill	554841.8	6371781.0	311.2	4	-90
NSW70643	Whatling Hill	554757.5	6371783.2	313.0	3	-90
NSW70644	Whatling Hill	554676.6	6371783.0	319.1	3	-90
NSW70645	Whatling Hill	554603.9	6371783.0	318.7	3	-90
NSW70646	Whatling Hill	554599.2	6371699.9	320.1	1	-90
NSW70647	Whatling Hill	554675.1	6371695.8	316.3	2	-90
NSW70648	Whatling Hill	554763.6	6371695.2	311.3	1	-90
NSW70649	Whatling Hill	554838.1	6371698.2	308.6	2	-90
NSW70651	Whatling Hill	554597.9	6371622.3	313.4	2	-90
NSW70652	Whatling Hill	554676.8	6371609.6	313.6	1	-90
NSW70653	Whatling Hill	554761.3	6371619.4	307.8	12	-90
NSW70654	Whatling Hill	554839.5	6371615.8	303.2	6	-90
NSW70655	Whatling Hill	554837.8	6371536.2	309.8	2	-90
NSW70656	Whatling Hill	554761.1	6371537.1	313.7	9	-90
NSW70657	Whatling Hill	554679.6	6371539.6	317.4	6	-90

Sample ID	Prospect	MGA94_55 Easting	MGA94_55 Northing	RL	Depth (m)	Dip
NSW70658	Whatling Hill	554599.0	6371552.6	323.0	3	-90
NSW70659	Whatling Hill	554842.4	6371460.6	316.1	8	-90
NSW70660	Whatling Hill	554757.9	6371458.1	317.5	3	-90
NSW70661	Whatling Hill	554765.4	6371383.4	315.1	3	-90
NSW70662	Whatling Hill	554839.3	6371380.6	311.4	9	-90
NSW70663	Whatling Hill	554840.1	6371296.4	313.9	3	-90
NSW70664	Whatling Hill	554761.6	6371301.1	313.9	3	-90
NSW70665	Whatling Hill	554598.2	6371301.0	319.5	2	-90
NSW70667	Whatling Hill	554685.0	6371299.8	315.4	1	-90
NSW70668	Whatling Hill	554678.0	6371382.4	317.3	3	-90
NSW70669	Whatling Hill	554609.5	6371379.0	317.7	2	-90
NSW70670	Whatling Hill	554674.1	6371450.6	319.8	3	-90
NSW70671	Whatling Hill	554602.5	6371217.8	316.4	1	-90
NSW70672	Whatling Hill	554680.6	6371212.8	313.0	2	-90
NSW70673	Whatling Hill	554766.0	6371217.5	315.5	1	-90
NSW70674	Whatling Hill	554601.8	6371462.4	320.7	2	-90
NSW70676	Whatling Hill	554601.4	6371136.8	310.6	3	-90
NSW70677	Whatling Hill	554681.9	6371138.2	309.5	1	-90
NSW70678	Whatling Hill	554761.3	6371136.5	310.9	3	-90
NSW70679	Whatling Hill	554840.6	6371140.6	307.7	1	-90
NSW70680	Whatling Hill	554920.4	6371131.5	306.0	6	-90
NSW70681	Whatling Hill	554999.6	6371777.3	301.6	9	-90
NSW70682	Whatling Hill	555087.7	6371781.6	305.5	5	-90
NSW70683	Whatling Hill	555165.5	6371709.6	312.7	2	-90
NSW70684	Whatling Hill	555004.1	6371700.0	303.3	3	-90
NSW70685	Whatling Hill	554920.6	6371622.4	301.0	6	-90
NSW70686	Whatling Hill	554998.3	6371620.4	300.4	9	-90
NSW70687	Whatling Hill	555080.9	6371619.4	303.9	3	-90
NSW70688	Whatling Hill	555166.6	6371624.6	305.9	6	-90
NSW70689	Whatling Hill	555238.7	6371622.9	312.0	3	-90
NSW70690	Whatling Hill	555243.1	6371542.5	305.7	2	-90
NSW70691	Whatling Hill	555164.7	6371537.0	298.6	3	-90
NSW70692	Whatling Hill	555088.2	6371544.9	297.9	6	-90
NSW70693	Whatling Hill	555002.5	6371541.4	299.7	5	-90
NSW70694	Whatling Hill	554920.8	6371542.9	305.3	4	-90
NSW70695	Whatling Hill	554919.1	6371457.7	298.6	1	-90
NSW70696	Whatling Hill	554998.1	6371459.8	295.2	2	-90
NSW70697	Whatling Hill	555077.3	6371455.4	297.6	1	-90
NSW70698	Whatling Hill	555160.7	6371455.1	300.0	2	-90
NSW70699	Whatling Hill	555240.9	6371454.9	304.4	2	-90
NSW70701	Whatling Hill	555316.6	6371456.1	297.7	6	-90
NSW70702	Whatling Hill	555399.4	6371456.8	303.2	9	-90
NSW70703	Whatling Hill	555474.9	6371455.4	299.9	6	-90
NSW70704	Whatling Hill	555478.6	6371380.0	295.6	6	-90
NSW70705	Whatling Hill	555404.5	6371380.3	293.2	2	-90
NSW70706	Whatling Hill	555323.9	6371384.0	296.6	9	-90
NSW70707	Whatling Hill	555242.4	6371377.2	298.6	2	-90
NSW70708	Whatling Hill	555167.4	6371377.5	286.6	2	-90
NSW70709	Whatling Hill	555084.3	6371377.2	290.3	3	-90
NSW70710	Whatling Hill	555006.4	6371376.4	292.9	6	-90
NSW70711	Whatling Hill	554923.8	6371372.6	297.5	3	-90
NSW70712	Whatling Hill	554923.6	6371296.5	299.3	2	-90
NSW70713	Whatling Hill	555006.9	6371294.7	290.0	3	-90
NSW70714	Whatling Hill	555085.6	6371300.0	272.7	3	-90
NSW70715	Whatling Hill	555158.3	6371303.8	258.8	2	-90
NSW70716	Whatling Hill	555244.4	6371308.2	251.1	2	-90
NSW70717	Whatling Hill	555324.5	6371311.2	249.7	2	-90
NSW70718	Whatling Hill	555405.4	6371312.1	251.1	9	-90
NSW70719	Whatling Hill	555481.6	6371305.8	295.6	9	-90
NSW70720	Whatling Hill	555481.6	6371214.1	295.8	7	-90
NSW70721	Whatling Hill	555406.5	6371222.6	298.7	9	-90
NSW70722	Whatling Hill	555324.2	6371216.3	300.0	3	-90
NSW70723	Whatling Hill	555244.7	6371216.5	300.6	3	-90
NSW70724	Whatling Hill	555159.7	6371221.0	307.5	3	-90
NSW70726	Whatling Hill	555079.7	6371218.4	310.6	5	-90
NSW70727	Whatling Hill	554999.6	6371222.0	314.0	3	-90
NSW70728	Whatling Hill	554929.3	6371223.3	304.2	6	-90
NSW70729	Whatling Hill	554846.8	6371215.5	322.7	1	-90
NSW70730	Whatling Hill	554998.6	6371140.6	311.7	1	-90
NSW70731	Whatling Hill	555166.1	6371140.1	312.5	6	-90

Sample ID	Prospect	MGA94_55 Easting	MGA94_55 Northing	RL	Depth (m)	Dip
NSW70732	Whatling Hill	555081.9	6371136.0	314.4	3	-90
NSW70734	Whatling Hill	555239.6	6371139.1	305.7	6	-90
NSW70735	Whatling Hill	555320.8	6371140.6	303.7	6	-90
NSW70736	Whatling Hill	555401.9	6371141.5	298.8	6	-90
NSW70737	Whatling Hill	555479.3	6371140.3	300.2	6	-90
NSW70738	Whatling Hill	555482.1	6371537.8	307.9	6	-90
NSW70739	Whatling Hill	555402.3	6371523.1	306.8	3	-90
NSW70740	Whatling Hill	555326.5	6371514.8	308.8	4	-90
NSW70741	Whatling Hill	555482.8	6371623.5	308.5	5	-90
NSW70742	Whatling Hill	555480.3	6371700.3	308.9	3	-90
NSW70743	Whatling Hill	555400.7	6371690.5	313.3	3	-90
NSW70744	Whatling Hill	555316.9	6371719.3	318.6	3	-90
NSW70745	Whatling Hill	555243.4	6371701.1	321.8	1	-90
NSW70746	Whatling Hill	555477.1	6371773.9	304.8	6	-90
NSW70747	Whatling Hill	555410.1	6371794.2	304.3	2	-90
NSW70748	Whatling Hill	555316.2	6371784.4	307.6	0.3	-90
NSW70749	Whatling Hill	555235.2	6371781.2	322.2	0.3	-90
NSW70751	Whatling Hill	555159.5	6371784.3	311.7	0.3	-90
NSW70752	Whatling Hill	555404.7	6371632.4	308.9	0.3	-90
NSW70753	Whatling Hill	555320.2	6371624.6	312.0	0.3	-90
NSW70574	Regional	556027.3	6370110.7	283.0	9	-90
NSW70576	Regional	556294.5	6370136.9	279.4	9	-90
NSW70577	Regional	556309.4	6369821.8	272.9	12	-90
NSW70578	Regional	555986.1	6369813.7	275.4	9	-90
NSW70579	Regional	555983.3	6369501.4	271.3	12	-90
NSW70580	Regional	556296.6	6369491.9	274.0	15	-90
NSW70581	Regional	555986.3	6369178.6	269.0	6	-90
NSW70582	Regional	556311.8	6369176.4	279.6	6	-90
NSW70583	Regional	556300.8	6368863.4	272.0	5	-90
NSW70584	Regional	555966.5	6368860.2	270.5	9	-90
NSW70585	Regional	556293.6	6368572.4	274.4	5	-90
NSW70754	Regional	555338.9	6370154.9	295.0	9	-90
NSW70755	Regional	555657.9	6370133.2	284.3	21	-90
NSW70756	Regional	555662.6	6369179.8	274.5	18	-90
NSW70757	Regional	555679.7	6369494.4	265.4	24	-90
NSW70758	Regional	555668.6	6369824.6	276.8	27	-90
NSW70759	Regional	555348.4	6369821.6	282.4	20	-90
NSW70760	Regional	555342.7	6369506.7	282.5	27	-90
NSW70761	Regional	555026.8	6369817.7	287.0	24	-90
NSW70762	Regional	555021.9	6369544.2	295.6	27	-90
NSW70763	Regional	554704.1	6369180.8	285.9	4	-90
NSW70764	Regional	554699.8	6368860.4	281.5	27	-90
NSW70767	Regional	554702.0	6368534.6	279.0	27	-90
NSW70768	Regional	554698.8	6368210.9	277.7	27	-90
NSW70769	Regional	554703.1	6367899.0	266.5	27	-90
NSW70770	Regional	554696.5	6367580.2	263.7	27	-90
NSW70771	Regional	555018.9	6367899.8	263.4	27	-90
NSW70772	Regional	555021.3	6367580.8	261.4	27	-90
NSW70773	Regional	555339.9	6367585.2	264.0	27	-90
NSW70774	Regional	555335.9	6367901.4	265.7	7	-90
NSW70776	Regional	555340.1	6368221.7	266.4	27	-90
NSW70777	Regional	555655.6	6368218.5	264.0	27	-90
NSW70778	Regional	555661.2	6368537.1	270.6	27	-90
NSW70779	Regional	555342.0	6368534.4	275.3	27	-90
NSW70780	Regional	555339.3	6368857.4	278.7	27	-90
NSW70781	Regional	555063.1	6369177.1	282.5	21	-90
NSW70782	Regional	555072.8	6368851.7	283.4	27	-90
NSW70783	Regional	555042.9	6368537.3	282.4	27	-90
NSW70784	Regional	555037.8	6368296.1	281.4	27	-90
NSW70785	Regional	556309.5	6368236.6	274.4	15	-90
NSW70786	Regional	555986.5	6368220.2	269.1	21	-90
NSW70787	Regional	555708.0	6367899.6	262.4	21	-90
NSW70788	Regional	555665.5	6367569.8	258.5	18	-90
NSW70789	Regional	555975.1	6367900.6	262.2	27	-90

Table 2: Aircore Drilling – Whatling Hill prospect and Regional Selected Results: >100ppm Cu

Sample ID	Prospect	Cu ppm	Fe %	Mn ppm	Mo ppm	Pb ppm	Zn ppm	Au ppb	As ppm
NSW70590	Whatling Hill	110	5.59	915	0.19	10.3	136	1	6.8
NSW70604	Whatling Hill	117	2.35	747	0.24	3.5	61	1	2.5
NSW70606	Whatling Hill	323	4.85	1340	0.37	2.7	206	18	3.5
NSW70607	Whatling Hill	231	4.87	1810	0.31	4.3	216	1	7.9
NSW70609	Whatling Hill	117	4.42	757	0.08	3.4	147	1	4.9
NSW70613	Whatling Hill	210	4.03	700	0.77	8.0	97	3	8.6
NSW70614	Whatling Hill	166	4.28	288	3.42	18.3	167	53	19
NSW70615	Whatling Hill	297	5.32	982	1.90	5.7	130	3	16.7
NSW70622	Whatling Hill	170	4.98	762	1.15	66.1	66	5	11.5
NSW70623	Whatling Hill	110	4.99	257	1.32	3.1	66	1	5.2
NSW70647	Whatling Hill	132	4.74	873	0.30	1.9	88	2	2.3
NSW70665	Whatling Hill	142	4.94	1550	0.53	24.1	103	3	3.7
NSW70672	Whatling Hill	160	5.57	1150	0.39	5.1	136	4	2.7
NSW70676	Whatling Hill	179	2.91	2160	0.85	11.2	418	4	6.1
NSW70681	Whatling Hill	125	6.40	1560	0.42	3.4	155	2	2.5
NSW70682	Whatling Hill	155	4.44	960	0.15	1.6	182	17	3.8
NSW70683	Whatling Hill	225	4.67	1100	1.85	1.9	138	3	2.9
NSW70685	Whatling Hill	244	4.87	430	1.17	1.8	128	2	2
NSW70686	Whatling Hill	113	6.65	1580	0.50	3.9	189	11	4.9
NSW70688	Whatling Hill	141	6.23	426	0.55	3.8	114	6	2.7
NSW70689	Whatling Hill	109	6.78	728	2.02	1.6	130	1	3
NSW70690	Whatling Hill	119	6.15	1000	1.45	1.2	115	2	2.2
NSW70691	Whatling Hill	121	6.08	1080	2.22	1.5	113	2	3.2
NSW70692	Whatling Hill	223	4.11	1200	1.36	1.5	141	2	2.7
NSW70694	Whatling Hill	182	5.39	994	2.24	2.5	130	2	2.4
NSW70696	Whatling Hill	157	5.65	1350	1.62	3.1	98	0.5	3.3
NSW70699	Whatling Hill	215	4.39	1220	1.71	2.2	179	2	2.6
NSW70701	Whatling Hill	102	4.36	1720	2.28	1.1	207	1	2.7
NSW70702	Whatling Hill	208	5.98	640	0.31	0.4	149	1	2.9
NSW70709	Whatling Hill	150	4.96	972	2.29	2.9	103	1	5.1
NSW70713	Whatling Hill	172	4.65	837	2.36	3.1	111	2	2.4
NSW70716	Whatling Hill	657	4.00	2040	2.00	3.6	99	2	3.9
NSW70719	Whatling Hill	1240	4.53	2150	1.26	1.9	245	3	4.3
NSW70728	Whatling Hill	236	5.01	1320	6.39	3.6	164	7	1.9
NSW70736	Whatling Hill	551	4.98	1650	2.34	2.2	112	2	4.2
NSW70738	Whatling Hill	395	5.70	3010	2.47	99.9	242	1	2.8
NSW70739	Whatling Hill	308	5.36	2360	1.70	16.3	149	2	2.4
NSW70741	Whatling Hill	174	7.67	1150	2.00	1.3	77	2	4.5
NSW70742	Whatling Hill	356	4.50	1680	2.30	144.5	276	2	4.9
NSW70744	Whatling Hill	366	3.98	905	2.24	33.2	127	2	3.6
NSW70746	Whatling Hill	215	4.02	1270	4.51	11.3	130	0.5	2.1
NSW70747	Whatling Hill	135	5.79	1260	1.30	6.0	195	2	5.1
NSW70574	Regional	346	7.62	2120	0.47	132.0	244	42	21.1
NSW70578	Regional	296	9.71	4690	1.34	44.8	123	28	15
NSW70579	Regional	206	9.02	337	0.55	21.0	41	2	9.6
NSW70580	Regional	198	9.02	4240	1.12	10.5	112	4	12.7
NSW70581	Regional	130	5.28	1330	0.18	3.4	88	3	4.5
NSW70754	Regional	138	8.28	1380	1.21	1.1	75	2	3.4
NSW70755	Regional	192	7.48	983	0.62	2.7	134	1	7.2
NSW70756	Regional	159	6.77	1710	5.59	8.4	79	8	5
NSW70757	Regional	124	5.59	2810	1.98	2.8	108	3	9.2
NSW70758	Regional	125	6.94	1050	1.15	22.8	133	31	64
NSW70759	Regional	727	6.65	1280	6.16	0.9	144	2	11.1
NSW70760	Regional	124	5.24	1340	0.94	4.5	243	4	57.2
NSW70761	Regional	259	4.95	1820	10.05	1.7	105	2	6.4
NSW70762	Regional	116	1.82	1080	0.85	1.8	76	1	2.9
NSW70764	Regional	1540	8.44	3620	0.36	3.7	342	3	4.5
NSW70767	Regional	250	11.50	920	0.45	29.1	97	0.5	38.8
NSW70768	Regional	182	6.32	1490	0.50	4.6	238	1	6.4
NSW70769	Regional	275	6.38	646	0.41	0.8	386	1	4.7
NSW70771	Regional	170	12.95	630	0.80	15.0	119	30	16.5
NSW70772	Regional	133	8.13	794	0.58	10.2	63	1	39.6
NSW70776	Regional	188	13.85	155	0.56	61.5	114	8	33.4
NSW70778	Regional	116	6.52	1670	0.54	2.7	115	1	3.3
NSW70779	Regional	171	8.01	3820	0.66	8.7	114	1	3
NSW70780	Regional	115	6.31	842	0.34	2.7	242	3	2
NSW70781	Regional	221	6.22	2730	0.39	20.7	401	3	6.7
NSW70782	Regional	114	8.62	161	0.16	12.2	24	1	3.1
NSW70787	Regional	148	5.01	913	1.66	1.8	96	2	7.1

**Data description as required by the 2012 JORC Code – Section 1 and Section 2
of Table 1 Aircore drilling program – Whatling Hill prospect and Regional**

Section 1 Sampling Techniques and Data		
Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> Ute mounted aircore (AC) drilling was used to collect AC chips and produce soil samples at Whatling Hill and Regional program. AC chip samples were collected by AC drilling to refusal on the soil-bedrock interface. 1m soil samples were collected at the end of hole by sieving to -2mm. A total of 202 holes were completed for 1,491m Aircore hole locations in Table 1 and Figures 2 and 3. The collar positions were located using handheld GPS units with an accuracy of \pm 5m. Logging from collar to end of hole included lithology, weathering, regolith, colour texture, moisture, contamination, and description. Samples were collected on 80 x 40m grid for the Whatling Hill prospect and 320 x 320m for the Regional. Aircore drilling was used to obtain from one-meter samples delivered through a cyclone. The 1 cyclone was placed in a green plastic bag. AC chips were collected every meter and placed in chip trays. The soil samples were generally collected from depths 0.3m to 27m (AC end of hole). The samples were sieved to -2mm and collected ~500 – 700gm for further sieving. The samples are considered to effectively represent the residual soil at point of collection. The samples were dried at RME yard, pulverized and sieved passing 80 micron to produce at least ~80g sub sample. Samples were sent to Orange ALS Laboratory for analysis by AuME-TL43 Low Level Gold in Soils.
<i>Drilling techniques</i>	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Drilling technique was aircore (AC) with hole diameter of 100mm.
<i>Drill sample recovery</i>	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> Sample recovery was assessed visually via average sample size collected in kraft bag. The samples were generally dry, few were damp, and showed little (<10%) variation in volume. The samples were visually checked for recovery, moisture and contamination; the results were recorded on log sheets/digitally. Cyclones were cleaned regularly to minimise contamination. The holes were dry, and there were no loss/gain of material introducing a sample bias.
<i>Logging</i>	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc)</i> 	<ul style="list-style-type: none"> All AC holes were logged (from collar to end of hole) by a geologist in order to provide a geological framework for the interpretation of the analytical data. A geological description of each sample was taken at the time of collection. Logging and description of AC chips was qualitative: Prospect/Target Name; Sample number, coordinates, coordinate system and survey control method; moisture, contamination, regolith and regolith description, colour,

Section 1 Sampling Techniques and Data		
Criteria	JORC Code explanation	Commentary
	<p><i>photography.</i></p> <hr/> <ul style="list-style-type: none"> <i>The total length and percentage of the relevant intersections logged.</i> 	<p>composition, lithology.</p> <ul style="list-style-type: none"> AC holes were photographed upon completion and rehab. AC chips on trays were photographed for documentation/reference. <hr/> <ul style="list-style-type: none"> All AC holes were geologically logged from collar to end of hole.
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> Not applicable – no core drilled. <hr/> <ul style="list-style-type: none"> One-meter sample were collected from a cyclone attached to the drill rig and collected in a green plastic bag. The bag was then put on the ground. At the end of hole (refusal), the geologist will sieve and collect the samples passing -2mm and put in a kraft bag (~500g sample) <hr/> <ul style="list-style-type: none"> The samples were dried and pulverized to produce a homogenous representative sub-sample. A grind quality target passing 80 micron to produce at least ~80g sub sample. Samples were analysed AuME-TL43 Low Level Gold in Soils. <hr/> <ul style="list-style-type: none"> Field QC involved the insertion of laboratory supplied Certified Reference Materials (CRMs) as assay standards (5) and blanks (4). <hr/> <ul style="list-style-type: none"> Duplicate samples (4) were collected/taken in the field. <hr/> <ul style="list-style-type: none"> Sample size is considered more than adequate to ensure there are no particle size effects.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> The samples were analysed by AuME-TL43 (25g samples) – Au by aqua regia extraction with ICP-MS finish. The method is for Low Level Gold in Soils. <hr/> <ul style="list-style-type: none"> Not applicable – no geophysical or portable analysis tools were used. <hr/> <ul style="list-style-type: none"> Internal Laboratory QC results are reported along with the sample values in the final analysis.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> 	<ul style="list-style-type: none"> Original sample data sheets and files were used to validate the contents of the company's database against the original assay. The raw assay data were reviewed and verified by company's Exploration Manager – NSW. <hr/> <ul style="list-style-type: none"> No aircore holes were twinned in the program. <hr/> <ul style="list-style-type: none"> All primary data was collected using a standard excel spreadsheet template on Ipad in the field. These data are transferred/uploaded to ERM server for

Section 1 Sampling Techniques and Data		
Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> Discuss any adjustment to assay data. 	<p>backup and data verification.</p> <ul style="list-style-type: none"> No adjustment have been made to assay data other than replacement of 'less than detection limit' with a value of half of the respective detection limit.
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> A handheld GPS was used to locate collar of all drillholes. GPS accuracy is +/- 5m for easting and northing coordinates. The grid system is MGA_GDA94, Zone 55. The topographic surface was generated from digital terrane models generated from low level airborne geophysical survey.
Data spacing and distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> For Whatling Hill prospect: aircore hole spacing along sections lines are 40m apart; the section/line spacing are 80m. For the Regional: a 320 x 320m aircore spacing was completed. Data from aircore drilling is not suitable for estimation of Mineral Resources. No sample compositing has been applied.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> Aircore holes were designed to test for the presence of mineralization below transported cover; and drilled vertically (-90°) No sampling bias is believed to have been introduced.
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Samples were placed in kraft bag with unique sample numbers. Once delivered from the field the samples were housed in secure premises prior to laboratory submission by Emmerson's contractor. Samples were placed in sealed polyweave bags for transport to the assay laboratory. Digital data was emailed to the Exploration Manager - NSW. The assay laboratory confirms that all samples have been received and that no damage has occurred during transport. While samples are being processed in the Lab they are considered to be secure.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> No audits or reviews of sampling techniques have been completed on the samples being reported.

Section 2 Reporting of Exploration Results		
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. <hr/> <ul style="list-style-type: none"> • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> • The Whatling Hill prospect and Regional is within EL8464, 100% held by Lachlan Resources (a wholly-owned subsidiary of Emmerson Resources Limited). • EL8464 Fifield is located just south of Tullamore and approximately 50 NW of Northparkes Cu-Au mine. • EL8464 is situated on map sheet SI55-3 Narromine 1:250,000 • EL8464 consists of wheat paddocks and minor grazing paddocks. <hr/> <ul style="list-style-type: none"> • EL8464 is in good standing and no known impediments exist.
Exploration done by other parties	<ul style="list-style-type: none"> • Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> • Previous exploration by other parties identified anomalous geochemical values and/or geophysical targets. • North Broken Hill Ltd explored the area in 1978 for tungsten and skarn. • Shell Company of Australia from 1981 - 1983 explored for tin-tungsten skarn deposits associated with the Gobondery granite; porphyry copper and base metal mineralisation associated with monzonite-diorite; tin-quartz- tourmaline mineralisation hosted by Girilambone sediments; and gold-base metal stockwork mineralisation hosted in Ordovician sediments. • North Mining Ltd (North) explored the district for Porphyry Cu-Au deposits within the Ordovician Volcanics from 1992 – 1995. • Clancy Exploration Ltd held the ground through EL6534 from 2006 – 2014 targeting Ordovician Porphyry Cu-Au system.
Geology	<ul style="list-style-type: none"> • Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> • Since the 1960's, the area inside EL8464 has been actively explored for a variety of metals including Cu, Au, Pb, Zn, Pt, Ni, Sn and W. Several historical small mining operations have been conducted in the tenement, e.g. Allandale and Gobondery. The Allandale Cu mine is a vein associated copper occurrence. The Gobondery Fe Mine was described as a small high-grade hematite deposit on the eastern contact of the Devonian Gobondery Granite. EL8464 lies within an inlier of Ordovician arc interpreted to have been rifted west off the Northparkes Igneous Complex. The main Ordovician arc is dominated by the Raggatt Volcanics consists of andesitic to trachyandesitic lavas and volcaniclastic rocks. The Devonian Gobondery granite in the western part of the tenement outcrops as a prominent hill. • The Ordovician Raggatt Volcanics have been tentatively correlated with the Womblin and Goonumbra Volcanics at Northparkes. • The style of mineralization of the Whatling Hill prospect is considered to be Porphyry Cu-Au. Elsewhere in the tenement, other porphyry prospects are Forrest View and Allandale prospect. • The Raggatt Volcanics are considered to be highly prospective to host Porphyry Cu Au, supported by the Late Ordovician age, and the occurrence of alteration associated with this style of mineralization. i.e. pervasive epidote and chlorite alteration, locally with disseminated magnetite, presence of magnetite veins and quartz-magnetite veins with clots of malachite. • Field based exploration has been complemented by cutting edge science which has included analysis of the alteration

Section 2 Reporting of Exploration Results		
Criteria	JORC Code explanation	Commentary
		<p>(trace and rare earth elements within the outer green rock or epidote/chlorite zone) where initial findings suggests</p> <ul style="list-style-type: none"> geochemical footprints of a porphyry system. Moreover, age dating of the monzonite intrusion within the Raggatt Volcanics yielded a Late Ordovician to Early Silurian age – all part of the University of Tasmania CODES ARC Linkage project.
Drillhole information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drillhole collar</i> <i>elevation or RL of the drillhole collar</i> <i>dip and azimuth of the hole</i> <i>downhole length and interception depth</i> <i>hole length.</i> 	<ul style="list-style-type: none"> Refer to Table 1 in the body of this announcement for details of Aicore drilling.
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> No length-weighting or cut-off grades have been applied. No aggregation of intercepts reported. No metal equivalent values reported.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.</i> <i>If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (eg 'downhole length, true width not known').</i> 	<ul style="list-style-type: none"> No definite relationships between mineralization widths and intercept lengths are known from this drilling program, the holes are all vertical and the depths of the drilling were terminated at refusal (up to 27m).
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Refer to Figures in the body of this announcement.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> Refer to Table 2 in the body of this announcement.
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> All meaningful and material information has been included in the body of the announcement.

Section 2 Reporting of Exploration Results		
Criteria	JORC Code explanation	Commentary
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Further work on the reported exploration targets will involve: <ul style="list-style-type: none"> Proposed a 2D IP Survey program to test the most prospective part of the target/belt for conductivity and resistivity and identify anomalous that will suggest disseminated sulfide target at depth Further work (RC or DDH drilling) if IP survey is encouraging.