

ASX Release

20 October 2011

**COVENTRY RESOURCES
LIMITED**

Suite 9
5 Centro Avenue
Subiaco, WA
Australia
Tel: +61 8 9324 1266
Fax: +61 8 9226 2027

Contact:

Mike Haynes
Executive Chairman

E-mail:
info@coventryres.com

For the latest news:
www.coventryres.com

Directors / Officers:

Michael Haynes
Tony Goddard
Rhoderick Grivas
Faldi Ismail
Nick Day

Issued Capital:

174.5 million shares
37.8 million options

ASX Symbol: CVY**UP TO 289.0 g/t GOLD RETURNED
FROM DRILLING AT THE
CAMERON GOLD PROJECT****HIGHLIGHTS**

- **Very high grade gold mineralisation intersected at the northern end of the Cameron Gold Deposit, including:**
 - **9.1 metres at 11.91 g/t gold, including
0.35 metres at 289.0 g/t gold**
- **High-grade gold mineralisation intersected in numerous other holes drilled to evaluate the northern and northwestern extensions of the main Cameron Gold Deposit, with results including:**
 - **4.0 metres at 6.18 g/t gold, including
1.0 metre at 19.10 g/t gold**
 - **1.0 metre at 36.40 g/t gold**
 - **5.0 metres at 4.48 g/t gold**
- **New JORC-Code compliant resource estimate being prepared to integrate 44,135 metres of recent drilling data with 84,541 metres of historic drilling data.**
- **Planning for follow-up drilling program well underway.**

Coventry Resources Limited (ASX: CVY and "Company") is pleased to advise that it has received analytical results for 34 of the 35 outstanding holes (5,947 metres) drilled in the recently completed drilling program at the Cameron Gold Project in Ontario, Canada. This program comprised a total of 299 holes for 44,135 metres.

All of the drill holes reported in this announcement were drilled to evaluate the northern and northwestern extensions of the +1Moz Cameron Gold Deposit.

Very high-grade gold mineralisation was intersected in one of these holes, CCD-11-172, which was drilled to evaluate the down-plunge extension of northern end of the Cameron Gold Deposit (See Figure 1 and Tables 1 and 2). Results from this hole included:

- **9.1 metres at 11.91 g/t gold from 256.0 metres, including
0.35 metres at 289.0 g/t gold from 262.7 metres**

The intersection of bonanza-grade gold mineralisation in this drill hole, which follows the recently reported intersection of 3.4 metres at 58.73 g/t gold, including 0.6 metres at 320.0 g/t gold, in drill hole CCD-11-099 (collared about 200 metres from CCD-11-172) further confirms the potential to delineate additional very high-grade quartz vein sets within the Cameron Gold Deposit that have until now been largely unrecognised.

Numerous other holes drilled to evaluate the northern and northwestern extensions of the Cameron Gold Deposit also intersected high-grade gold mineralisation. Recent results (see Figure 1 and Tables 1 and 2) include:

- **4.0 metres at 6.18 g/t gold from 171.3 metres, including
1.0 metre at 19.10 g/t gold from 173.3 metres**
- **1.0 metre at 36.40 g/t gold from 263.2 metres**

- **5.0 metres at 4.48 g/t gold from 64.0 metres**
- **2.8 metres at 4.13 g/t gold from 75.3 metres**
- **2.5 metres at 4.29 g/t gold from 28.5 metres**

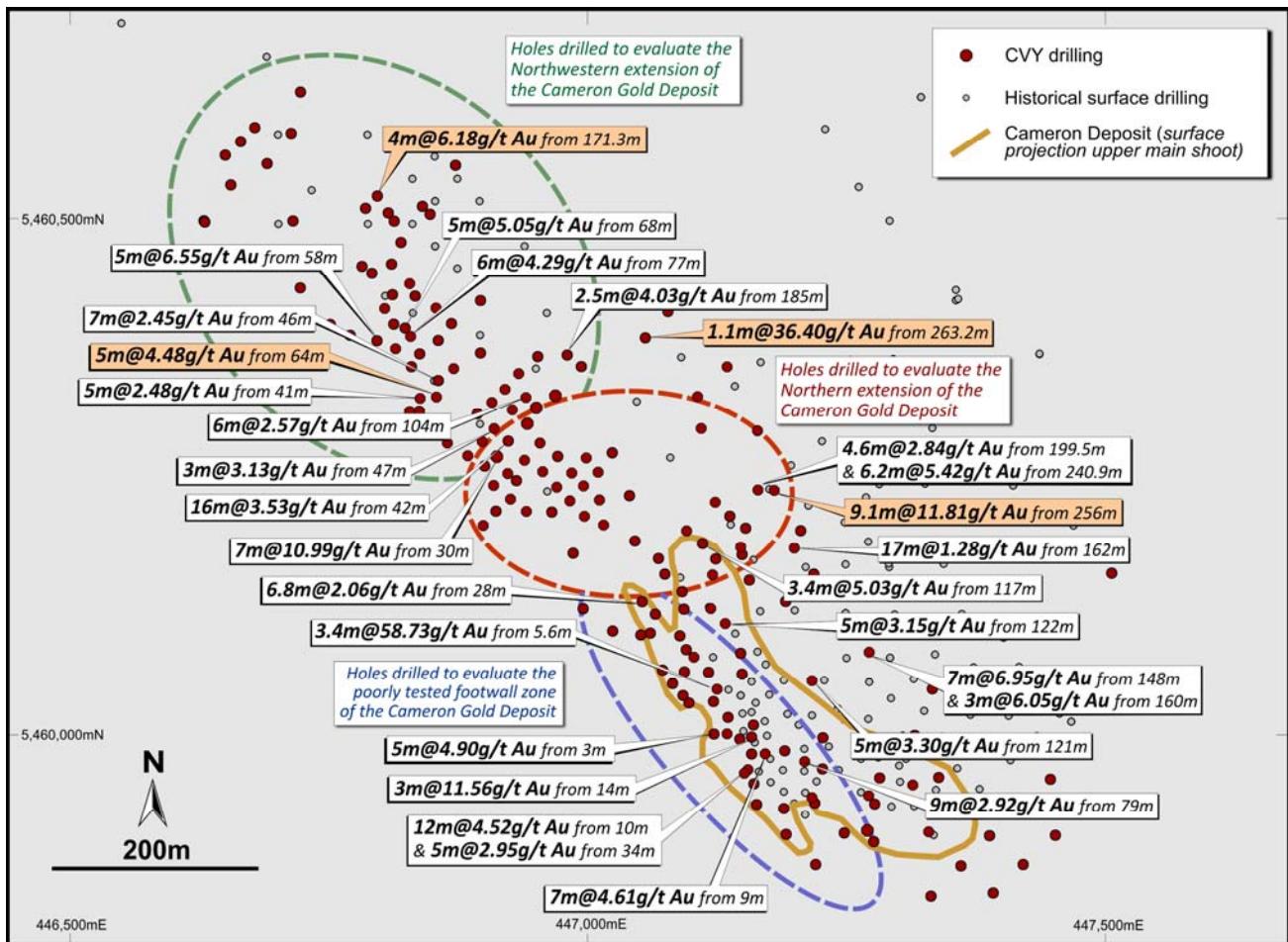
These results provide further confirmation that there are additional thicker, higher-grade shoots of mineralisation immediately along strike from the main mineralised zone at the Cameron Gold Deposit. These recent holes also confirm that these shoots have significant depth extent.

Despite recent intensive drilling, mineralisation to the north and northwest of the Cameron Gold Deposit remains open along strike and at depth.

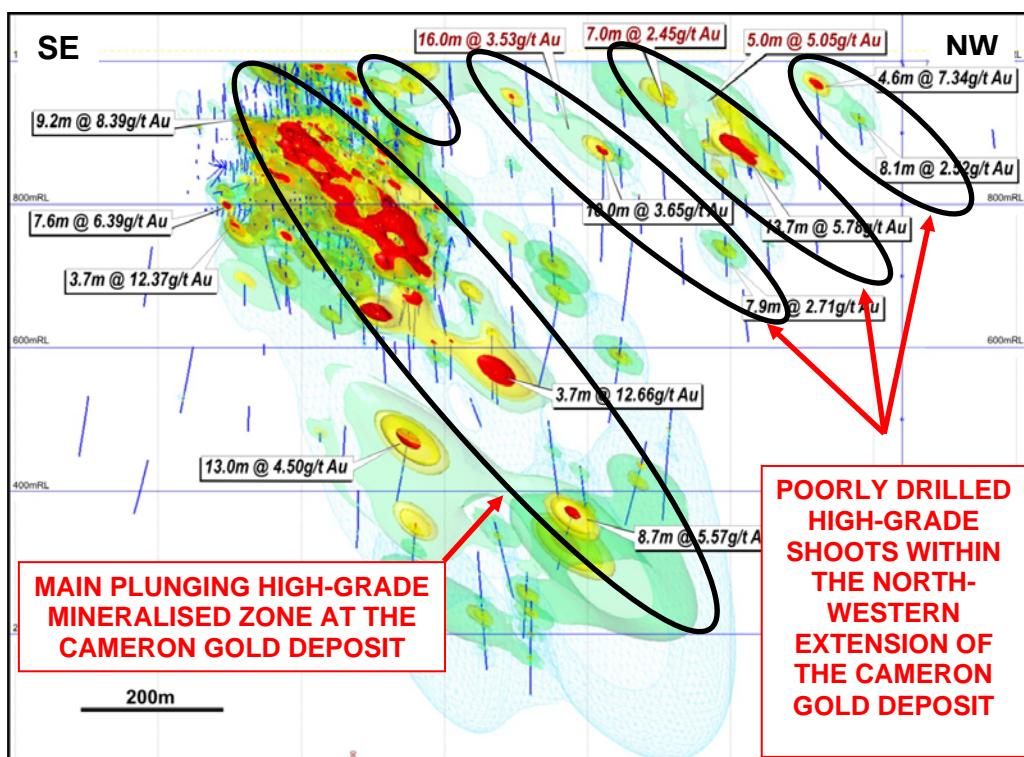
Resource Upgrade

The Company has now received analytical results for all but one of the 299 drill holes completed in the recent drilling program. Considerable progress has been made re-interpreting the data from these holes, including the integration of analytical results from these holes with the historic 84,541 metres of drilling data. On completion of this reinterpretation a new JORC-Code compliant resource estimate will be calculated, incorporating all of the drilling data from the project. The mineral resource estimate for the Cameron Gold Deposit currently comprises:

11.3Mt at 2.77 g/t gold for 1.0 Moz of gold


This has not been recalculated since the Company's 44,135 metre drilling program began. It is anticipated that the resource upgrade will be finalised during November 2011.

Follow-up Drilling Program


Despite recent intensive drilling, mineralisation at the northern and northwestern extensions of the Cameron Gold Deposit remains open along strike and at depth. There are more than 30 other gold occurrences, prospects and deposits within the Company's 12,800 hectare project area that also remain heavily underexplored.

Plans are well advanced to undertake further drilling to continue to evaluate the exploration potential of the Cameron Gold Project. It is anticipated that a follow-up drilling program will commence in November 2011.

Mike Haynes
Executive Chairman

Figure 1. Location plan showing collars of surface drill holes, highlighting those drilled recently and better results, at the Cameron Gold Project.

Figure 2. Cameron Gold Deposit long section facing southwest, highlighting in red text boxes the approximate position of intersections of significant mineralisation in the first phase of diamond drilling at the north-western extension of the Cameron Gold Deposit. (Historic drill hole traces are shown in blue; Red zones on image > 5.0 g/t gold). The model by Leapfrog™ Software was completed prior to the commencement of the Company's drilling, so traces of the Company's drill holes do not appear on this image.

Table 1. Drillhole collar and depth information for the reported holes at the Cameron Gold Project.

Hole Number	Zone	Easting (NAD83 Zone 15)	Northing (NAD83 Zone 15)	Easting (Local)	Northing (Local)	Inclination	Azimuth	Total Depth
CCD-11-142	NW Extension	446938	5460267	99980	50540	225	-61	111
CCD-11-144A	N Extension	447056	5460384	100176	50540	225	-67	456
CCD-11-145	NW Extension	446899	5460203	99900	50520	225	-60	51
CCD-11-146	NW Extension	446925	5460228	99940	50520	225	-60	72
CCD-11-148	NW Extension	446956	5460255	99980	50520	225	-61	120
CCD-11-149	NW Extension	446969	5460241	99980	50500	225	-61	144
CCD-11-150	NW Extension	446984	5460254	100000	50500	225	-62	168
CCD-11-151	N Extension	447249	5460382	100280	50400	225	-60	451
CCD-11-152	NW Extension	446998	5460269	100020	50500	225	-62	180
CCD-11-153	NW Extension	446982	5460228	99980	50480	225	-61	129
CCD-11-157	NW Extension	446996	5460213	99980	50460	225	-61	129
CCD-11-158	NW Extension	447010	5460228	100000	50460	225	-62	150
CCD-11-159	NW Extension	447015	5460203	99985	50440	225	-61	135
CCD-11-161	N Extension	447109	5460297	100120	50440	225	-63	321
CCD-11-162	N Extension	447095	5460198	100040	50380	225	-61	192
CCD-11-163	N Extension	447122	5460226	100080	50380	225	-62	276
CCD-11-170A	NW Extension	447153	5460200	100080	50340	225	-62	255
CCD-11-172	N Extension	447179	5460238	100130	50350	225	-63	291
CCD-11-173	N Extension	446827	5460297	99920	50640	225	-60	72
CCD-11-174	NW Extension	446854	5460326	99960	50640	225	-61	120
CCD-11-175	NW Extension	446812	5460399	99980	50720	225	-61	126
CCD-11-176	NW Extension	446791	5460448	100000	50770	225	-62	162
CCD-11-177	NW Extension	446829	5460358	99960	50680	225	-61	123
CCD-11-178	NW Extension	446819	5460478	100040	50770	225	-62	164
CCD-11-179	NW Extension	446855	5460383	100000	50680	225	-61	171
CCD-11-180	NW Extension	446848	5460506	100080	50770	225	-63	240
CCD-11-182	NW Extension	446812	5460499	100050	50790	225	-63	216
CCD-11-183	NW Extension	446784	5460511	100050	50800	225	-63	219
CCD-11-184	NW Extension	446807	5460507	100040	50820	225	-60	243
CCD-11-185	NW Extension	446796	5460523	100060	50820	225	-60	231
CCD-11-186	NW Extension	446649	5460562	99980	50950	225	-61	147
CCD-11-187	NW Extension	446663	5460576	100000	50950	225	-62	141
CCD-11-188	NW Extension	446677	5460589	100020	50950	225	-62	157

Table 2. Significant intersections greater than 1.0 g/t gold for the holes reported at the Cameron Gold Project, applying a 0.5 g/t gold cut-off and two metres maximum of internal dilution.

Hole Number	From (m)	To (m)	Interval (m)	Au (g/t)
CCD-11-142	95.0	98.0	3.0	1.28
CCD-11-144A	34.3	37.9	3.6	1.24
	45.0	48.0	3.0	1.05
	250.0	251.0	1.0	1.76
	263.2	264.3	1.1	36.40
	270.5	271.9	1.4	2.19
	281.9	287.0	5.1	1.44
CCD-11-145	14.0	15.0	1.0	4.36
CCD-11-146	22.0	23.0	1.0	1.82
	48.0	51.0	3.0	1.68
CCD-11-148	98.2	100.3	2.1	1.54
CCD-11-149	<i>No Significant Assays</i>			
CCD-11-150	111.9	113.0	1.1	1.49
	115.2	116.2	1.0	1.54
CCD-11-151	357.1	358.3	1.2	1.02
	366.5	372.5	6.0	1.58
	384.8	386.2	1.4	1.86
CCD-11-152	127.9	129.0	1.1	2.62
CCD-11-153	12.0	13.0	1.0	1.94
	70.0	71.0	1.0	2.21
	83.0	84.0	1.0	2.67
CCD-11-157	60.5	65.5	5.0	1.14
	70.4	71.4	1.0	1.06
	83.0	84.0	1.0	2.67
CCD-11-158	100.0	101.0	1.0	1.30
CCD-11-159	<i>No Significant Assays</i>			
CCD-11-161	227.8	228.8	1.0	1.39
CCD-11-162	124.1	126.8	2.7	1.93
CCD-11-163	<i>No Significant Assays</i>			
CCD-11-170A	121.4	122.4	1.0	2.87
	155.0	156.3	1.3	1.16
	174.0	175.0	1.0	1.98
	206.0	207.0	1.0	1.13
CCD-11-172	205.0	206.7	1.7	1.02
	256.0	265.1	9.1	11.81
<i>including</i>	262.7	263.1	0.4	289.00
CCD-11-173	<i>No Significant Assays</i>			
CCD-11-174	40.4	45.6	5.2	1.38
	64.0	69.0	5.0	4.48
CCD-11-175	60.3	63.3	3.0	3.06
CCD-11-176	151.9	153.0	1.1	1.22
CCD-11-177	75.3	78.1	2.8	4.13
CCD-11-178	28.5	31.0	2.5	4.29
	139.0	140.0	1.0	1.25
CCD-11-179	65.0	66.8	1.2	2.52
	136.0	137.0	1.0	1.63
CCD-11-180	182.5	187.1	4.6	1.38
CCD-11-182	<i>Assays Pending</i>			
CCD-11-183	147.0	153.0	5.0	1.00
	181.6	183.6	2.0	1.28

Hole Number	From (m)	To (m)	Interval (m)	Au (g/t)
CCD-11-184	18.0	19.0	1.0	1.41
	161.0	162.0	1.0	4.79
	167.9	170.1	2.2	1.69
	182.0	184.6	2.6	3.81
CCD-11-185 <i>including</i>	163.9	164.9	1.0	1.32
	171.3	175.3	4.0	6.18
	173.3	174.1	1.0	19.10
	204.5	205.5	1.0	2.20
CCD-11-186	96.7	97.7	1.0	1.72
CCD-11-187	116.5	117.5	1.0	1.01
CCD-11-188	<i>No Significant Assays</i>			

Competent Persons Statement

The information in this announcement that relates to exploration results is based on information compiled by or under the supervision of Anthony Brendon Goddard. Mr Goddard is Technical Director of Coventry Resources Limited and a Member of the Australian Institute of Geoscientists. Mr Goddard has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" and a Qualified Person as defined in the Canadian National Instrument 43-101 (standards of disclosure for Mineral Projects). Mr Goddard consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Mineral Resources or Ore Reserves is based on information compiled by Mr Peter Ball who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Peter Ball is the Manager of Data Geo. Mr Peter Ball has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Peter Ball consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.